
Comparison of Learning Programming between Interactive
Computer Tutors and Human Teachers

Ruiqi Shen, Donghee Yvette Wohn, Michael J. Lee
New Jersey Institute of Technology

Newark, New Jersey, USA
{rs858,donghee.y.wohn,mjlee}@njit.edu

ABSTRACT
People typically learn programming from teachers in in-person
courses or online tutorials. Interactive computer tutors—systems
that deliver learning content interactively—have become more
prevalent in online settings for teaching skills such as computer pro-
gramming. Research has shown the efficiency and effectiveness of
learning programming from teachers, interactive computer tutors,
and a combination of both. However, there is limited understanding
of learners’ comparative perspectives about their experience learn-
ing from these different resources. We conducted an exploratory
study using semi-structured interviews, recruiting 20 participants
that had experience learning programming from both teachers
and interactive computer tutors. We identified factors that learn-
ers like and dislike from both learning methods and discussed the
strengths and weaknesses of them. Based on our findings, we pro-
pose suggestions for designers of interactive computer tutors, and
for programming educators.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
Tutors; interactive computing tutors; student perspectives; comput-
ing education; teachers
ACM Reference Format:
Ruiqi Shen, Donghee Yvette Wohn, Michael J. Lee. 2019. Comparison of
Learning Programming between Interactive Computer Tutors and Human
Teachers. In ACM Global Computing Education Conference 2019 (CompEd
’19), May 17–19, 2019, Chengdu, Sichuan, China. ACM, New York, NY, USA,
7 pages. https://doi.org/10.1145/3300115.3309506

1 INTRODUCTION
Learning programming is considered a difficult process that requires
considerable practice just like learning a natural language. How-
ever, unlike natural languages that can be used in multiple contexts
and modalities in everyday experience, learners typically program
within the constraints of a computer screen [26]. The difficult na-
ture of programming may contribute to the high dropout rates in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6259-7/19/05. . . $15.00
https://doi.org/10.1145/3300115.3309506

related courses in both classrooms [18, 40] and massive open online
courses (MOOCs) [28, 37]. Due to this difficulty, choosing the right
learning tools and methods is important for programming learners,
regardless of their prior experience.

Like all learning methods, however, each has benefits and draw-
backs. One-on-one tutoring would be an ideal strategy to teach and
learn programming—human tutoring is one of the most effective
ways for students to overcome programming barriers [15], but the
lack of teachers in computing education has always been a concern
of researchers and educators [16], and many learners have limited
access to tailored, in-person programming courses. Even for those
who have access to courses, large lecture-based formats make in-
dividualized attention from the instructor for tailored instruction
unlikely [2]. Besides traditional in-classroom lectures, MOOCs are
an attractive, alternative educational resource for learners since
they are more affordable, accessible, and can support more students
simultaneously than traditional classrooms [36, 43]. However, the
lack of interactions with instructors [31] and the lack of extrin-
sic motivations [10, 16] are major limitations for MOOCs and are
development opportunities for the future.

For the purposes of this paper, we focus only on MOOCs that
deliver instruction through a virtual agent, or interactive computer
tutor (as opposed to those primarily giving instruction through text
or video). Farrell et al. were the first to introduce an interactive
computer tutor (ICT) for teaching programming [9]. They described
it as a system with two components: a "problem solver" (which
can interpret learners’ code and give feedback), and an "advisor"
(which provides tutorials that guide learners throughout the whole
learning process) [9]. Systems for teaching programming such as
Codecademy, Datacamp, and Treehouse, are much like the ICT
described by Farrell, including a problem solver and advisor. We
define ICTs as having these two features, and examine these types
of systems in this paper. We choose to study ICTs rather than other
types of MOOCs because literature has shown that these interactive
tools are effective in delivering programming courses [7, 19] and
are gaining more popularity with learners [25, 27].

While learning programming from either ICTs or teachers have
shown positive student learning outcomes, there are few studies
examining learners’ perspectives on their experience using and
comparing these two methods. Exploring these perspectives can
lead to important insights for better designs and highlight effective
techniques that learners look for while learning to program.

This paper describes an exploratory qualitative study examining
the learning experience from the learners’ perspective, contrasting
their views on learning from an ICT and from a classroom teacher.
By understanding the learners’ perspective on instructors, we aim to

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

2

https://doi.org/10.1145/3300115.3309506
https://doi.org/10.1145/3300115.3309506

find ways to improve current ICTs’ and teachers’ teaching methods,
and to further improve learners’ educational experience.

2 RELATEDWORK
2.1 Learning from Interactive Computer Tutors
The key to successfully master programming skills is through ex-
tensive practice and making mistakes [1]. However, during the
learning process, students have more difficulties in applying pro-
gramming in practice than understanding basic programming con-
cepts [35]. Many MOOC websites such as Codecademy and Khan
Academy provide interactive learning environments for program-
ming. They integrate tutorials with extensive exercises and code
editors with feedback systems [30]. Empirical studies have found
that students learning programming interactively through well-
designed computer systems achieve good learning outcomes and
increased self-efficacy [9, 19].

What are the good features of an ICT for delivering program-
ming courses? Prior work has found that watching videos and
solving multiple choice questions are not sufficient in learning
hands-on skills or practical programming tasks [34], and that in-
stant feedback for students’ submissions are important in learning
programming [20, 21, 34]. Staubitz et al. proposed five requirements
for an ICT to deliver programming courses: Versatility (support
multiple programming languages), Novice-Friendliness (UI catered
for beginners), Scalability (support for many users), Security (secure
students’ submissions/assessments), and Interoperability (integrate
into existing infrastructures) [34]. Pritchard & Vasiga summarized
that embedded coding environments are beneficial for students’ con-
tinuity in learning-by-doing [30]. While most educators will agree
that a mentor is essential in the initial learning process for begin-
ners, Liyanagunawardena et al. showed that in an online course, the
learner’s community itself can act as a mentor and could possibly
mitigate the issue of not having enough teachers for students [22].
Users can also recognize the benefits of features such as intentional
instructional design (well-designed instructions), learning analyt-
ics (information for self-reflection), and instant feedback [42]. Our
study expands on these works, aiming to explore whether these
commercial systems (e.g., Codecademy and Datacamp)—which in-
clude features such as the ones mentioned above—can be considered
good ICTs, and what users of these systems think about them.

2.2 Learning from Teachers
Unlike computer tutors, which have a relatively short history in ed-
ucation, human teachers have been a part of education for centuries.
Several studies have demonstrated the effectiveness of human teach-
ers [4, 6, 24]. A teacher can guide students and can have them do
as much thinking as possible before giving hints or answers [11].
Teachers can also intervene at the right moment to prevent students
from becoming too frustrated [24], which is especially important in
the early stage of learning, when learners have a higher likelihood
of quitting [40, 41]. Teachers are also adaptable, with research show-
ing that interventions in teaching styles can drastically improve
teachers’ effectiveness [38].

In addition to one-to-one teaching, there is also research about
one-to-many teaching. Robins et al. [32] concluded that an effective

programming class should stimulate students’ interest and involve-
ment, by setting clear goals and actively engaging participants
in course materials and problem-solving activities [32]. However,
what teaching approach contributes to an effective programming
class remains a question. Pears et al.’s overview of programming
classes found little systematic evidence to support any particu-
lar teaching approach that answers the question of how to teach
programming effectively [29]. From a learner’s perspective, Tan
et al.’s survey study indicates that programming learners find the
practical application of programming most difficult, and therefore
lab sessions with consultation are considered more helpful than
pure lectures [35]. However, questions such as what kind of lab ses-
sions they like and whether they could get sufficient consultation
opportunities remain largely unknown to us.

2.3 Learning From the Learners’ Perspective
Based on our literature review, we found a gap in knowledge exam-
ining the learners’ perspectives on receiving instruction from either
ICTs or teachers. It is important to examine the learners’ perspec-
tive on the difference(s) between computers and teachers, and what
their preference are when interacting with either of these choices
when learning to program. The learning method they choose may
influence their perception of programming skills, and therefore, po-
tentially affect retention rates and learning experiences. Therefore,
we explore the following two research questions in this paper:

RQ1: What do learners (a) like, and (b) dislike, about learning
programming from interactive computer tutors (ICTs)?

RQ2: What do learners (a) like, and (b) dislike, about learning
programming from teachers?

3 METHOD
To answer these research questions, we conducted in-person, semi-
structured interviews with 20 subjects. Interviews are a commonly
used method for exploratory studies [8, 33, 39], especially to gain
an in-depth perspective into subjects’ views and experiences when
there is limited research in the literature [13]. We recruited par-
ticipants through snowball sampling [14], where each participant
suggested at least one additional person that met our inclusion
criteria and that they thought would be a good candidate for us to
interview. The initial six participants were students from a mailing
list that represented a wide range of demographics (e.g., gender, eth-
nicity, age, job/major) from two public universities in the northeast
United States (US), with subsequent participants being classmates,
alumna, or professional colleagues distributed across the US.

One researcher conducted all the interviews, either in-person
(n=16) or on the phone (n=4). All interviews were recorded, aver-
aging 29 minutes per interview. We required participants to have
experience learning programming from both teachers and ICTs. We
defined a teacher as a human instructor in a classroom setting, and
used Farrell et al.’s two-component definition for ICTs (see intro-
duction and [9]). We intentionally did not specify ICTs any further,
so that our participants could talk broadly about the technologies
they had used without being limited to a specific type of ICT.

The interview questions included two major parts: (1) behavioral
questions that asked participants about their occupations, majors,
coding experience, and coding-related behaviors (e.g., "In general,

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

3

how long have you been programming?"); and (2) research-related
questions that probed participants about their experiences learning
programming from both ICTs and human teachers (e.g., "What
problems did you encounter, and how did you resolve them?").

All of the recorded interviews were transcribed and coded us-
ing NVivo. Two researchers coded the interview transcripts using
the three-stage coding process outlined by Cambell et al. in their
work describing how to measure intercoder reliability for semi-
structured interview studies [5]. This was done iteratively until
the two researchers came to a consensus on codes and a sufficient
level of intercoder reliability and intercoder agreement (stages 1
and 2); then the full set of transcripts were analyzed (stage 3) [5].
Since participants could state their likes, dislikes, and preferences
in every research related question, we read through all the tran-
scriptions and assigned tags to any emergent patterns (e.g., code
editors, content design, flexibility, and efficiency). During the pro-
cess, we read through those tagged texts, and consolidated similar
tags into one tag (i.e., code families [5]), or split one tag into dif-
ferent tags. This resulted in 19 themes (each research question has
several themes) and more than 50 tags. We analyzed all 20 interview
transcripts, reaching a high level of intercoder reliability (.87) and
intercoder agreement (.92)1. We present representative quotes from
participants in our results to better explain our themes.

4 RESULTS
Our participants included 9 females and 11 males, ranging from 22
to 32 years old (median 26). Everyone was from a STEM field/major
or job, consisting of 13 students (6 females and 7 males), and 7
working professionals (3 females and 4 males). Their experience in
programming ranged from 1 to 15 years (median 4.5).

4.1 RQ1a: What Do Learners Like About
Learning Programming from Interactive
Computer Tutors?

4.1.1 Provides a Code Editor. A code editor allows learners to write
and run their code directly on the ICT. Most of the participants
considered this feature to be helpful, and there are three main
reasons: First, a code editor dismisses the need to set up a local
environment. 7 out of 20 participants mentioned that they did not
need to set up local environment when they only wanted to learn
some basics. The code editor saves time from having to set up a
local programming/development environments.

Second, a code editor provides one-window convenience. Partici-
pants mentioned that they liked the code editor because they could
see the tutorials, examples, and do the exercises in the same win-
dow, which was more convenient than switching windows between
tutorials and coding tools. P9 told us how she found the code editor
to be convenient: "If I follow YouTube, it’s not convenient because
I code on my local computer, I watch the video, then switch to my
software. But in Dataquest, the screen is separated in two parts. You
can see the instruction and at the same time, you can type your code."

Third, a code editor provides a similar, but better-than-real en-
vironment. Two participants mentioned that they liked the code

1Scores were calculated using the proportion agreement procedure [5]. We note that
while well-established in quantitative work, there is no community consensus about
the applicability of inter -rater/coder reliability measures for qualitative studies [3, 17].

editor because it was similar to the real coding environment but
better in terms that the code editor in the ICT could give customized
feedback while a real environment could not.

4.1.2 Content Design. This refers to the course materials and the
way ICTs organize and deliver information. The content design
can be grouped into three main features. First, ICTs organize and
display lessons with a clear outline, which learners can use to see
exactly where they are in the learning process (i.e., curriculum).
P20 described how she found the organization useful in Dataquest:
"The lessons are very simplified [in Dataquest]. They are broken down
into different modules, so it makes it very easy to consume."

Second, ICTs provide practice immediately after each tutorial, so
learners can (re)apply whatever they learned quickly. P3 mentioned
how the immediate practice was useful: "for the W3 school, you’ll
first grab the same concept, but immediately you will use the ‘try
it yourself’ demo page. You can put this knowledge into real world
practice. That’s why I like it."

Third, ICTs provide examples. Participants mentioned that the
examples from ICTs were very helpful to understand the lessons.
P5 is a novice programmer, and his biggest concern was that he
could not visualize what his code would output. He described his
experience of learning web development in Codecademy, and how
it helped him with examples: "It [Codecademy] has an example to
show you the final version, you can test again and compare your code
to the example, that will help you to improve your code."

4.1.3 Flexible. Participants enjoyed the flexibility in learning when
using ICTs. Flexibility allows learners to go at their own pace when-
ever and wherever they want. 8 participants mentioned that they
wished to learn at their own pace, and so learning from ICTs could
satisfy their needs. P2 told us that he preferred online learning
because he could learn at his own pace: "For lectures [that are] 3
hours long, if you don’t understand something an hour in, then you
kind of waste two hours. Whereas you can make sure you understand
it online before proceeding onto the next section or the next concept."

With an ICT, learners can learn whenever and wherever they
want. P20 gave us her opinion on location flexibility: "Like, I don’t
have Python installed on my phone and I can still do my lessons [on
Dataquest] maybe if I’m in transit traveling somewhere." In the case
of P8, he was a full-time student who also held a part-time job. He
told us how time flexibility helped him learn. "I could do it at 2am if
I want. A teacher is not available at 2am," he said.

4.1.4 Efficient. Some participants compared the ICT with other re-
sources and concluded that they liked the efficiency when learning
from ICTs. 2 participants compared the time spent learning from an
ICT and from a teacher in a classroom. They felt that being present
in a physical classroom was time-consuming, just as P19 told us:
"Because if I want to go to school and take a class, that’s going to be
very time-consuming."

Four participants compared ICTs with textbooks. They thought
that learning from ICTs helped them apply skills more efficiently
than reading textbooks. For example, P7 told us: "I think for textbook
resource, one annoying thing for me is it doesn’t show you like all the
command[s] and what it does. So, you have to waste time reading it
yourself, but for Codeacademy, they just teach you each command.
It’s a faster way to learn it."

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

4

4.1.5 Provide Sufficient Help. Participants mentioned that they
could use in-context resources within the interface to get assistance
if needed. There are three specific features that provide sufficient
help for learners: (1) hint systems, (2) staff help, and (3) discussion
panels. A hint system is the basic feature providing help (usually
generated automatically), and the very first help learners will re-
ceive. P14 gave us an example on a hint system: "you can just get
the hints and they’ll give you a hint and then you can either get the
answer or you can just continue trying, but you’re not just stuck there
if you really can’t figure it out."

Although the next two kinds of help require some type of human
intervention, we report them since they were emergent themes.
Currently, it appears that ICTs do not have the capability to supply
some types of help that learners want (but humans can provide).
However, this may change with advancements in natural language
processing and machine learning, where systems might better de-
tect and understand the context of their users’ need for help.

If the hint system fails to achieve learners’ expectations, some
ICTs provide staff help. Staff are real people who are course experts.
P1 gave us an example: "They have two or three hints that they give,
after that, they even say if you have any issues, ‘we have [real] people
who would help you out,’ and you can send your queries to them."

Built-in discussion panels also provide a place where learners
can discuss their questions and ask for help. P9 liked discussion
panels very much and she said: "Because in Dataquest, they also
have something called ‘the community.’ You can search [for] your
questions in the community and the community members will post
the answers. You can refer to their answers."

4.1.6 Designed for Various Learner Levels. Some ICTs provide dif-
ferent pathways based on skill-level. With these, learners can find
courses matching their experience. P16 told us: "For Codecademy,
they have levels, like ‘did you just start learning code,’ ‘you already
have some experience,’ ‘you’re an expert,’ like that. So that really helps
because if you already know coding you don’t need a very simple
example because it’s too easy."

Interestingly, one participant mentioned that he liked the feature
of Codecademy that locks access to later content until finishing
the current module. He had one year of programming experience,
and he emphasized many times his anxiety as a beginner. This
feature forced him to learn step-by-step. Another participant men-
tioned that he liked the short video tutorials provided by Treehouse.
Compared with a long video tutorial, these short videos relieve the
cognitive load of learners.

4.2 RQ1b: What Do Learners Dislike About
Learning Programming from Interactive
Computer Tutors?

4.2.1 Content Design. This again refers to the course materials and
the way ICTs organize and deliver information. While most people
liked the content provided by ICTs, there were also participants
who did not like the content design. Four participants thought that
the tutorials and practice materials were too basic to be useful.
They liked ICTs but wished they could provide more advanced
content. P2 had 4 years of programming experience; he considered
himself as having a good understanding of programming basics,

and expressed his concerns: "I was doing C++, but I kind of stopped
because I thought it was too easy and too basic [...] They just teach
you such basic concepts and they don’t go in-depth."

One participant disliked course content because the sections
were redundant. He said: "At the beginning, I will find they are
pretty useful, but like 4-5 lessons after, I find the content to be very
dry, meaning it’s really the same thing over-and-over again, I’m not
really learning a lot of things that weren’t [covered] there before."

While some experienced learners considered the content covered
by ICTs to be too basic, other junior-level learners mentioned that
sometimes, information were too brief to understand. Some ICTs
provide short introductions, but do not really explain the logic
behind the material. P11 started programming 2 years ago, and was
struggling to understand the complex logic behind concepts. "For
me, I don’t like reading introduction[s online], because they want to
simplify their content and the introduction is so brief. Sometimes I
don’t fully understand the [programming] language," she said.

4.2.2 Locks Access to More Advanced Concepts. Participants said
that some ICTs required them to finish the current module before
unlocking the next one. While we mentioned that one participant
liked this feature earlier, four participants disliked this feature. They
had prior experience and had clear goals on what they had to learn.
This feature limited their learning efficiency. P13 was a working
professional who had 2+ years of programming experience and
learned programming for fun in his leisure time. He said: "I know
what this is, and I want to skip it to [go to] the next module. I’m not
able to do that, because I got to complete the first module, and then go
to the second module. So, I didn’t find that to be very user-friendly."

4.2.3 Does not Provide Sufficient Help. Although some participants
believed they could get sufficient help from ICTs, four participants
disagreed. These participants did not believe that the tutor could
guide them effectively to figure out the logic behind a problem.
P5, a novice programmer, shared his experience getting stuck on
a problem in Codecademy: "They [Codecademy] will actually show
me the right answer. I still don’t know what’s wrong with my answer
and it didn’t show me or highlight the mistakes that I made, so I still
don’t know the answer."

4.3 RQ2a: What Do Learners Like About
Learning Programming from Teachers?

4.3.1 Has Real Life Experience in Programming. 7 out of 20 par-
ticipants mentioned that they liked to learn from teachers who
share their real-life experience in programming. These experiences
include: how to avoid common mistakes, how to style the code, tips
on interviews, and how to become a good programmer. P5 was a
beginner in programming, he said: "They [professors] always try
to tell you how to avoid mistakes." P11 had 2 years of experience
in programming, but she was anxious about being a novice. She
enjoyed learning from her teachers. "They teach some things about
the languages and they also tell some real experience for coding, and
even some tips about interview and future working. They told us how
a good programmer should do their job," she said.

One participant observed that teachers are not only experienced
in programming, but also in teaching. Teachers know and can focus
on parts that students have the most difficulty understanding.

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

5

4.3.2 Provides Solid Learning Experience. Participants believed
they could learn programming more concretely and systematically
with teachers. Teachers introduce new concepts, but also provide
more information and background about these concepts. Teach-
ers also help students stay on the right track. P4 had 10 years of
programming experience, and suggested beginners to start pro-
gramming with a good teacher. He said: "I believe a good teacher
will teach you knowledge in a systematic way. If you have zero knowl-
edge, the best way is to learn from a teacher, because if you learn from
an online app, your knowledge is scattered, and it’s not systematic.
You learn piece-by-piece, [so] you might miss some bigger parts."

4.3.3 Has Conversations. Conversations with teachers are valuable
to learners. Participants thought that they could discuss ideas and
explain their problems better through conversations. P17 was expe-
rienced in programming and was full of project ideas that he would
like to discuss with his advisor. He said: "When you communicate
with him, firstly you can solve your problem. And secondly if you
have some ideas, you can talk with him and he is experienced, so he’ll
give you some feedback on your ideas and you know how to improve
yourself or how to improve your program."

Another 3 participants felt conversations allowed teachers to
better understand students’ problems. Face-to-face conversation
with experts is an easier way to get problems solved than sending
emails or searching for answers elsewhere, because learners can
use various methods to express themselves in-person (e.g., drawing,
writing, gesticulating). P10 told us that she could show her work
directly to teachers when communicating face-to-face, so that the
teachers can better understand her questions with real examples.

4.3.4 Provides Real-Time Help. Participants mentioned that they
could have their questions answered immediately when they were
in class with teachers. When learners program, it is common to
encounter errors. However, if these errors are not solved immedi-
ately, it may lead to other issues, causing the learner to get stuck.
ICTs usually cannot provide real-time help for specific questions,
while teachers can. When asked why they like to learn program-
ming from teachers, P11, a beginner said: "I think it is better with
a teacher. Because if there are any questions you can immediately
ask for help." Another more advanced programmer, P16, said: "So,
in-person it’s more instant and I can do some things right away and
get out the way whatever question I have."

4.3.5 Displays Code Example. Three participants liked teachers
who showed code examples in class. P2 had 4 years of programming
experience; he had some teachers who would just lecture for hours
and teachers who showed code examples. He thought that he got
little from the former because he could not understand the lecture
content without any examples. He had a teacher who made class
easier by showing code examples. He said: "She basically taught
and then she had her code that helped us, whereas other professors
were just lecturing for three hours."

4.4 RQ2b: What Do Learners Dislike About
Learning Programming from Teachers?

4.4.1 Not Efficient. Most participants thought that learning from
teachers was not efficient. Teachers typically take time in providing
assignments and giving feedback. In contrast, online tools do these

immediately and on-demand. As P2 told us: "Because at the same
time a teacher, you don’t get assignments as quickly as you would
online. So, the feedback comes in once a week as opposed to maybe
you could literally do the whole course in a day if you want."

The lecturing style of the teacher may also be less efficient than
reading the course materials. P6 had 15 years of programming
experience. Most of the teachers he had would just read from the
textbooks. He expressed his frustration with these types of teachers
since he could just read from the textbook himself at home.

In addition, three participants felt online materials were easier to
access than teachers. For example, P13 stated that online materials
could be accessed quickly, while for teachers, he needed to register
and pay for a course, and even be physically present in class.

4.4.2 Does Not Have Same Pace with Students. Teachers’ speed
of instruction was also a large concern for learners. 9 out of 20
participants had the experience of being unable to keep up with
the teachers’ pace. This happened when the teacher delivered the
content too quickly, or when students had difficulties understanding
some points, but the teacher kept moving forward. For example,
P20 had a fast-paced programming course. As a novice programmer
with little experience, she could not catch up with the progress,
so she turned to online courses for help. She said: "And with class,
things go by so quickly, we meet only once a week and we have to
cover so much. So, I feel like I’m lagging behind, I’m not catching up
fast enough with the professor in the class, so I went to do something
online where it can go at my own pace."

Two participants had the opposite experience—they found classes
too slow. P16 was a student who always learned things quickly, and
so, when she took a class but was ahead of the teacher’s pace, she
felt bored. She said: "The class gets boring, because you already know.
[...] there are students around you that are still asking questions and
they don’t get it, it’s very hard for them to understand."

4.4.3 Provides Inflexible Curriculum. Sometimes, the content pro-
vided in a course were not what learners wanted. P12 had learned
programming for years. When he was in college, he selected a
C++ course, wishing to learn some advanced topics. However, the
course he attended only covered basic concepts. He told us how
disappointed he was: "what he taught during lecture, I already know,
and what he taught was just the basic syntax, but he did not introduce
those advanced [content] which [...] I already learned from another
way. That’s why I say he is not very helpful."

While P10, who was less experienced than P12, told us that she
wished to learn some basics, but what the teacher taught was more
advanced. She said: "I figured I will get a tutor to teach me the basics,
because he [professor] didn’t teach us the basics."

4.4.4 Teaching Competency. Some of the participants questioned
their teachers’ programming competence. Three participants thought
their teachers were not experienced in programming, and believed
that a good programming teacher should be a good programmer.
P9 was disappointed with her programming teacher when he could
not explain example code in detail. She said: "he is not experienced in
programming. All of his code is just copy-paste from another website,
and then sharing it to you. He can’t explain any details to you."

Programming skills and new technologies are constantly chang-
ing, but participants had concerns that their teachers’ skills were

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

6

not up-to-date. For example, P12 had a solid foundation in pro-
gramming; his goal was to learn new technologies. He found that
teachers in school did not satisfy his needs. "I think the teacher is
usually far behind the current progress [...] But what I want to learn,
is always something new," he said.

4.4.5 Is Not Responsive. Some participants felt that they lacked
teacher attention in large classes. "They [professors] are always busy;
your problems might not be solved in time," P18 said.

Lack of responsiveness may also be attributed to a teacher’s
personal style. P17 told us one of his teachers who never replied
their emails, he said: "one of my professors never replied [to] my
e-mails. The only way you’ll find him is in his class. So, I will only
have limited chances to ask questions."

5 DISCUSSION
We identified many features that make learners like or dislike learn-
ing from ICTs and teachers. Efficiency and practice were the two
main factors that learners care about. Since most of our partici-
pants learned programming with the goal of applying it quickly
into work or study, learning efficiency was their biggest concern.
Most of the participants thought that learning-by-doing was the
best way to master programming skills, so immediate practice was
also a consideration when choosing learning methods. In addition,
our participants were not satisfied with single-media instructions
such as textbooks or video. Our findings have implications for
designers of ICTs and teachers who teach programming.

For ICTs, the biggest strengths that most participants mentioned
were code editors and additional practice, while a major weakness
was the content design (too basic, repetitive, or brief). To address
this issue, designers could providemore advanced, practice-oriented
tutorials by taking advantage of the availability of code editors.

The existence of both basic and advanced experience levels leads
to another problem we identified during interviews. Two partic-
ipants liked the features that some ICTs separate the content for
different level of learners; one beginner programmer liked the fea-
tures that the computer forced him to learn step-by-step (by locking
content until finishing the current activity), whereas four, more
experienced learners, did not like this feature. A key design con-
sideration is to gauge a learner’s experience at the beginning of
the course/tutorial/activity so that the teacher or ICT can deliver
content in a manner consistent with one’s experience.

According to our findings, ICTs were good at delivering content
with related exercises in an efficient manner, while teachers did a
better job in providing customized help with real life experience.
Both ICTs and teachers can gain benefits from each other. First,
teaching applications can hire experts, who can provide help for
questions when requested by online learners. Experts can also
be present in the system’s online learning community to have
conversations with learners.

Second, one of our findings suggests that teachers were expe-
rienced in delivering knowledge, so they knew what parts of the
course content might bemost difficult to students, so that they could
pay extra attention when teaching those parts. ICTs can achieve this
feature by gathering data about different sections of their course
content (e.g., howmany tries does someone take to write the correct
code, or how much time do they spend on a concept) and provide

extra instruction, help, or practice for the parts that most learners
have difficulties with.

Third, most participants indicated that they valued the opportu-
nity to have conversations with teachers. Reasons include gaining
coding tips, real life experience as programmers, exchanging project
ideas, and getting help with questions. Listening to long lectures
without interactions were disliked by students. There is potential
to combine ICTs into programming classes to compliment teachers.
Our findings suggest that existing ICTs do a good job in delivering
basic concepts and exercises. Therefore, teachers may be able to
have ICTs deliver basic information, and spend the time saved hav-
ing more conversations with students regarding problems, projects,
and real-life experience in programming.

6 LIMITATIONS & FUTUREWORK
Our study has limitations that present opportunities for further
research. First, our recruitment method may have introduced a sam-
pling bias. However, we found that our participants represented a
wide variation of demographic factors and years of experience with
coding. Second, we had a total of 20 participants in our study, which
may raise questions about the representativeness of our sample and
generalizability of our findings. We reached data saturation [12, 23]
on our 16th interview and verified that our additional participants
did not provide substantially different information from prior par-
ticipants. Third, we identified that factors such as learning envi-
ronment (e.g., summer camp, college course, vocational training)
and learning objectives (e.g., learning for work, school practice, or
personal interest) may affect how learners evaluate their learning
experience. We will conduct further research to explore whether
learning environments and learning objectives, or even other fac-
tors (e.g., gender, age, job, level of experience, order of learning
from a specific type of tutor), affect how learners evaluate their
learning experience(s). Lastly, we used participants’ self-reported
number of years in programming to describe them in our study
(e.g., "P11 had 2 years of experience in programming."). However,
self-reported years of experience may not reflect participants’ ac-
tual programming ability or expertise. Future studies can examine
the relationship between years of experience and programming
ability. Other objective measures (e.g., test of knowledge) can be
used to gauge learners’ programming ability and experience level.

7 CONCLUSION
In this paper, we explored learners’ perspectives on receiving in-
structions from human teachers versus interactive computer tutors
when learning programming. We found that efficiency and practice
are the two main factors that learners care about when choosing
between these two types of instruction. Our findings also suggest
the strength and weakness of learning from interactive computer
tutors and teachers, which we use as a basis for design suggestions
for these types of instruction.

ACKNOWLEDGMENTS
This workwas supported in part by the National Science Foundation
under grant IIS-1657160. Any opinions, findings, conclusions or
recommendations are those of the authors and do not necessarily
reflect the views of the National Science Foundation.

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

7

REFERENCES
[1] Carlos Alario-Hoyos, Carlos Delgado Kloos, Iria Estévez-Ayres, Carmen

Fernández-Panadero, Jorge Blasco, Sergio Pastrana, and J Villena-Román. 2016.
Interactive activities: the key to learning programming with MOOCs. European
Stakeholder Summit on Experiences and Best Practices in and Around MOOCs,
EMOOCS (2016), 319.

[2] John R. Anderson and Edward Skwarecki. 1986. The automated tutoring of
introductory computer programming. Commun. ACM 29, 9 (1986), 842–849.

[3] David Armstrong, Ann Gosling, John Weinman, and Theresa Marteau. 1997. The
place of inter-rater reliability in qualitative research: an empirical study. Sociology
31, 3 (1997), 597–606.

[4] Benjamin S Bloom. 1984. The 2 sigma problem: The search for methods of group
instruction as effective as one-to-one tutoring. Educational Researcher 13, 6 (1984),
4–16.

[5] John Campbell, Charles Quincy, Jordan Osserman, and Ove Pedersen. 2013. Cod-
ing in-depth semistructured interviews: Problems of unitization and intercoder
reliability and agreement. Sociological Methods & Research 42, 3 (2013), 294–320.

[6] Peter A Cohen, James A Kulik, and Chen-Lin C Kulik. 1982. Educational outcomes
of tutoring: A meta-analysis of findings. American Educational Research Journal
19, 2 (1982), 237–248.

[7] Brian LF Daku and Keith Jeffrey. 2000. An interactive computer-based tutorial
for MATLAB. In Frontiers in Education Conference (FIE), Vol. 2. IEEE, F2D–2.

[8] Kathleen DeMarrais. 2004. Qualitative interview studies: Learning through
experience. Foundations for research: Methods of inquiry in education and the
social sciences 1, 1 (2004), 51–68.

[9] Robert G Farrell, John R Anderson, and Brian J Reiser. 1984. An Interactive
Computer-Based Tutor for LISP.. In AAAI. 106–109.

[10] Gerhard Fischer. 2014. Beyond hype and underestimation: identifying research
challenges for the future of MOOCs. Distance Education 35, 2 (2014), 149–158.

[11] Barbara A Fox. 1991. Cognitive and interactional aspects of correction in tutoring.
Teaching knowledge and intelligent tutoring 01 (1991).

[12] Jill J Francis, Marie Johnston, Clare Robertson, Liz Glidewell, Vikki Entwistle,
Martin P Eccles, and JeremyMGrimshaw. 2010. What is an adequate sample size?
Operationalising data saturation for theory-based interview studies. Psychology
and Health 25, 10 (2010), 1229–1245.

[13] Paul Gill, Kate Stewart, Elizabeth Treasure, and Barbara Chadwick. 2008. Methods
of data collection in qualitative research: interviews and focus groups. British
Dental Journal 204, 6 (2008), 291.

[14] Leo A Goodman. 1961. Snowball sampling. The Annals of Mathematical Statistics
(1961), 148–170.

[15] Philip J Guo. 2015. Codeopticon: Real-time, one-to-many human tutoring for com-
puter programming. In ACM Symposium on User Interface Software & Technology.
ACM, 599–608.

[16] Mark Guzdial. 2014. Limitations of MOOCs for Computing Education-Addressing
our needs: MOOCs and technology to advance learning and learning research
(Ubiquity symposium). Ubiquity 2014, July (2014), 1.

[17] Kevin A Hallgren. 2012. Computing inter-rater reliability for observational data:
an overview and tutorial. Tutorials in quantitative methods for psychology 8, 1
(2012), 23.

[18] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?. In
ACM International Computing Education Research. ACM, 97–108.

[19] Kris MY Law, Victor CS Lee, and Yuen-Tak Yu. 2010. Learning motivation in
e-learning facilitated computer programming courses. Computers & Education
55, 1 (2010), 218–228.

[20] Michael J Lee and Andrew J Ko. 2011. Personifying programming tool feedback
improves novice programmers’ learning. In International Workshop on Computing
Education Research. ACM, 109–116.

[21] Michael J Lee, Andrew J Ko, and Irwin Kwan. 2013. In-game assessments increase
novice programmers’ engagement and level completion speed. InACMConference
on International Computing Education Research. ACM, 153–160.

[22] Tharindu R. Liyanagunawardena, Karsten O. Lundqvist, Luke Micallef, and
Shirley A. Williams. 2014. Teaching programming to beginners in a massive
open online course. (2014).

[23] Kirsti Malterud, Volkert Dirk Siersma, and Ann Dorrit Guassora. 2016. Sample
size in qualitative interview studies: guided by information power. Qualitative
health research 26, 13 (2016), 1753–1760.

[24] Douglas C Merrill, Brian J Reiser, Michael Ranney, and J Gregory Trafton. 1992.
Effective tutoring techniques: A comparison of human tutors and intelligent
tutoring systems. Journal of the Learning Sciences 2, 3 (1992), 277–305.

[25] Briana B Morrison and Betsy DiSalvo. 2014. Khan academy gamifies computer
science. In ACM Technical Symposium on Computer Science Education. ACM,
39–44.

[26] Robert Moser. 1997. A fantasy adventure game as a learning environment: why
learning to program is so difficult and what can be done about it. In ACM SIGCSE
Bulletin, Vol. 29. ACM, 114–116.

[27] Robert Murphy, Larry Gallagher, Andrew Krumm, Jessica Mislevy, and Amy
Hafter. 2014. Research on the use of Khan Academy in schools: Research brief.
(2014).

[28] Daniel Fo Onah, Jane Sinclair, and Russell Boyatt. 2014. Dropout rates of massive
open online courses: behavioural patterns. EDULEARN (2014), 5825–5834.

[29] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature
on the teaching of introductory programming. In ACM SIGCSE Bulletin, Vol. 39.
ACM, 204–223.

[30] David Pritchard and Troy Vasiga. 2013. CS circles: an in-browser python course
for beginners. In ACM Technical Symposium on Computer Science Education. ACM,
591–596.

[31] Liana Razmerita, Kathrin Kirchner, Kai Hockerts, and Chee-Wee Tan. 2018. To-
wards aModel of Collaborative Intention: An Empirical Investigation of aMassive
Online Open Course (MOOC). In Hawaii International Conference on System Sci-
ences.

[32] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[33] Herbert J Rubin and Irene S Rubin. 2011. Qualitative interviewing: The art of
hearing data. Sage.

[34] Thomas Staubitz, Hauke Klement, Jan Renz, Ralf Teusner, and Christoph Meinel.
2015. Towards practical programming exercises and automated assessment
in Massive Open Online Courses. In Teaching, Assessment, and Learning for
Engineering (TALE). IEEE, 23–30.

[35] Phit-Huan Tan, Choo-Yee Ting, and Siew-Woei Ling. 2009. Learning difficulties in
programming courses: undergraduates’ perspective and perception. In Computer
Technology and Development, Vol. 1. IEEE, 42–46.

[36] Terry Tang, Scott Rixner, and Joe Warren. 2014. An environment for learning
interactive programming. In ACM Technical Symposium on Computer Science
Education. ACM, 671–676.

[37] Colin Taylor, Kalyan Veeramachaneni, and Una-May O’Reilly. 2014. Likely
to stop? predicting stopout in massive open online courses. arXiv preprint
arXiv:1408.3382 (2014).

[38] Arto Vihavainen, Jonne Airaksinen, and Christopher Watson. 2014. A systematic
review of approaches for teaching introductory programming and their influence
on success. In Conference on International Computing Education Research. ACM,
19–26.

[39] Robert S Weiss. 1995. Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster.

[40] Aharon Yadin. 2011. Reducing the dropout rate in an introductory programming
course. ACM Inroads 2, 4 (2011), 71–76.

[41] An Yan, Michael J Lee, and Andrew J Ko. 2017. Predicting abandonment in online
coding tutorials. In Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 191–199.

[42] Ahmed Mohamed Fahmy Yousef, Mohamed Amine Chatti, Ulrik Schroeder, and
Marold Wosnitza. 2014. What drives a successful MOOC? An empirical exam-
ination of criteria to assure design quality of MOOCs. In Advanced Learning
Technologies (ICALT). IEEE, 44–48.

[43] Li Yuan, Stephen Powell, JISC CETIS, and others. 2013. MOOCs and open educa-
tion: Implications for higher education. (2013).

Paper Session: Student Experiences CompEd ’19, May 17–19, 2019, Chengdu, Sichuan, China

8

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning from Interactive Computer Tutors
	2.2 Learning from Teachers
	2.3 Learning From the Learners' Perspective

	3 Method
	4 Results
	4.1 RQ1a: What Do Learners Like About Learning Programming from Interactive Computer Tutors?
	4.2 RQ1b: What Do Learners Dislike About Learning Programming from Interactive Computer Tutors?
	4.3 RQ2a: What Do Learners Like About Learning Programming from Teachers?
	4.4 RQ2b: What Do Learners Dislike About Learning Programming from Teachers?

	5 Discussion
	6 Limitations & Future Work
	7 Conclusion
	Acknowledgments
	References

