

Multimodal Programming Environment
for Kids: A “Thought Bubble” Interface
for the Pleo Robotic Character

Abstract
We introduce a mixed physical and digital programming
environment for children to control robotic characters.
We present our design rationale, our initial prototype,
report the results from our initial evaluation, and
discuss ongoing work.

Keywords
Tangible, programming, robotic toys, children

ACM Classification Keywords
H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—artificial, augmented,
and virtual realities.

Introduction
Robotic toys and animatronics are gaining popularity
and starting to be widely available on a consumer level
(e.g., by WowWee, Sony, Hasbro, Omron). Ugobe’s
Pleo [5] is one such consumer level robotic dinosaur
toy targeted for children aged 8 and up. Pleo is
designed to be a friendly and curious baby dinosaur
that exhibits a variety of life-like movements. Out of
the box, Pleo responds to touch and gives an
impression of learning by reacting to an individual

Copyright is held by the author/owner(s).

CHI 2009, April 4 – 9, 2009, Boston, MA, USA

ACM 978-1-60558-246-7/09/04.

Kimiko Ryokai
School of Information
Berkeley Center for New Media
University of California Berkeley
Berkeley, CA 94720 USA
kimiko@ischool.berkeley.edu

Michael Jongseon Lee
School of Information
University of California Berkeley
Berkeley, CA 94720 USA
michael_lee@berkeley.edu

Jonathan Micah Breitbart
School of Information
University of California Berkeley
Berkeley, CA 94720 USA
breitbart@ischool.berkeley.edu

owner in unique ways. However, in reality, Pleo is not
equipped with any learning mechanism but simply runs
complex combinations of canned responses that
emulate intelligent behavior.

Our informal observations of children (age 5-10)
playing with Pleo showed that children cuddled with
Pleo, and like with a real pet, they wanted to teach Pleo
special tricks. Instead of passively responding to what
is already programmed into Pleo, we want to give
children the opportunity to actively create and control
Pleo’s behaviors.

Pleo is an open source platform, allowing technically
capable hobbyists to customize and program their
original behaviors beyond the preprogrammed actions

(e.g., singing original songs or performing customized
dances). However, in order to produce such customized
expressions, one needs a relatively high level of
technical competency (e.g., knowledge of the C
programming language and PAWN scripting). In this
regard, our goal is to create an environment that allows
children to easily program and control the creature’s
behaviors.

Pleo “Thought Bubble”:
Combining the Physical and Virtual
During our informal play sessions with an out-of-the-
box Pleo, children noticed that Pleo was doing
something in response to their physical touch.
However, it was not so clear to the children which part
of their touch was recognized by Pleo, and what Pleo
would do in response. Therefore, we wanted to give
children real-time access to what goes on in the robotic
dinosaur’s head so that they could better understand
the process as well as what behaviors they can change
or control.

Illuminating the thought process: Thought Bubble
The metaphor we built on is a “thought bubble” of the
robotic character, through which children tap into the
thought process of the character. We use a touch
screen in combination with Pleo to show what is
happening to Pleo in terms of input (how Pleo is
touched), output (what Pleo does in response), and
memory (learned pairs of input and output), in real
time.

 figure 1. UGOBE’s robotic baby
dinosaur, Pleo.

figure 2. Combining the Physical and the GUI programming using the
“thought bubble” of the robotic character as a metaphor.

figure 3. Touch screen interface to Pleo’s Thought Bubble

MONITORING THE STATUS AND POSSIBLE ACTIONS
Touching different body parts of the robotic Pleo
immediately highlights the chosen area of the Pleo
image on the screen and shows available actions tied to
that area (see figure 3). At the same time, Pleo starts
to physically perform the listed actions in sequence. For
example, if Pleo’s chin is touched, Pleo goes through
purring, tail wagging, mooing, and singing in sequence,
as long as the chin is being touched. These actions
performed by Pleo are also highlighted on the “thought
bubble” screen. The desired behavior may be positively
reinforced by either feeding the robotic Pleo its physical
leaf, or by pressing the virtual leaf icon on the touch
screen interface. For example, if Pleo’s singing behavior
while being scratched on its chin is rewarded with the
leaf, Pleo associates the chin scratch with the singing
behavior. Therefore, the next time Pleo’s chin is
touched, Pleo associates that input as the cue to start
singing.

PROGRAMMING SEQUENCES
“Learned” behaviors are saved in Pleo’s “memory bank”
(see figure 4). This memory bank serves as a
repository showing which tricks Pleo has been taught.
The left column labeled “me” represents input, i.e.,
what the user does (e.g., touching Pleo’s chin, head,
legs, back, or tail) and the right column labeled “pleo”
represents output, i.e., what Pleo does in response to
the input (e.g., singing, wagging tale, stretching, etc.)
Touching a body part associated with the top-most pair
will cause the last learned trick to execute.

The items on the left “me” column can be removed by
pressing the trashcan icon. Once the input part of the
pair is removed, the action is automatically played
directly after the preceding pair. For example, figure 4
shows the topmost pair in the queue would initiate by
touching the tail. If the tail is touched, Pleo will start to
sing. Immediately after singing, Pleo will wiggle his
right leg, as the “me” column is missing and Pleo does
not have to wait for any input from the user. After
wiggling its right leg, Pleo will wait for the user to touch
its back to execute the next pairing. Using the trashcan
tool on a lone action sequence will "undelete" the
associated body part, returning the pair to its original
state. As such, the memory bank allows basic
conditional (procedural) as well as sequential behavior
programming.

Combining Physical Interaction and GUI
We wanted to allow multiple entry points to interaction
with the robotic toy by providing both physical and
virtual interfaces. The child may choose to program 1)
with the physical toy only, ignoring the screen interface
altogether and focusing on physical interactions with
Pleo, 2) on the screen interface only, directly

figure 4. A close up of the
“memory bank” showing
some behaviors have a
conditional statement (e.g.,
“when the tail is touched”),
and some have not.

controlling Pleo’s behaviors through the GUI only, or 3)
using a combination of the physical interface and GUI.

Related Work
A variety of programming environments for robotic
creatures have inspired our work. Crickets [9] and
commercially available LEGO Mindstorms [3] are
systems of physical LEGO blocks, sensors, actuators,
and programming environment that allow children to
create their own programmable robotic creations. They
invite creators to move between the physical world of
model creation with blocks and the virtual world of
programming. Topobo [8] is a new construction kit with
kinetic memory that invites young children to build 3D
creatures and program their movements by directly
twisting and turning the physical model. Guo and
Sharlin presented a system that allows a person to
control a robotic character, Aibo, via Nintendo Wii game
controllers [1]. By combining the physical and the
virtual, our approach is to have children decide where
to focus their actions and allow them to easily move
between physical interaction and virtual control.

System implementation
The “thought bubble” interface was developed in
Python using the pyGame library [6]. Communications
with Pleo are achieved by sending serial commands
over the USB port using the pySerial libraries [7].

For our initial prototype, we chose four different
possible behaviors that Pleo can perform for each of the
six stimulus points on Pleo (tail/backside, body/back,
back legs, front legs, top of head, chin), for a total of
24 possible behaviors. We chose behaviors that would
be memorable yet relatively brief (between four and
ten seconds) that include a combination of movements

and sounds. In identifying actions to include, we used
the Dino-MITE [2] and MySkit [4] software applications.
Dino-MITE allows monitoring of Pleo's COM port
connection and joint positions, as well as sending
commands to Pleo. Dino-MITE can also list Pleo's built-
in behaviors. MySkit is a performance editing program
that allows users to create "skits" by manipulating
Pleo's joint positions. The behaviors we chose to include
are a combination of the built-in behaviors identified
through Dino-MITE, complete and modified behaviors
from the MySkit library, as well as custom designed
behaviors built in MySkit.

The custom and modified MySkit behaviors were loaded
onto Pleo's SD card. Each behavior has a custom
command that our program uses to execute behaviors
through the serial USB connection to Pleo. After
identifying the behaviors used in our system, we
created icons corresponding to each behavior for the
"thought bubble" interface. Our program associates
each behavior command with the corresponding icon.

Evaluation
We were interested in investigating whether or not
children understand the “thought bubble” interface as a
tool to access and control Pleo’s behaviors. Another
interest was in learning how children’s focus shifted
back and forth from the physical interface to the GUI.

Participants and Methodology
Nine children between the ages of 5 and 8 participated
in our study. Three groups of children played with our
system in dyads. One group of children played with the
system in a triad. The investigator first briefly
introduced Pleo and the thought bubble screen to the
children and then left the system for the children to

play by themselves. Each group played for 20-30
minutes with our system. Since it was difficult to gain
ready access to Pleo’s touch sensors, for our initial
observation, we decided to use a “Wizard of Oz”
approach where one of the investigators watched the
children's interactions and filled in the gap by sending
the touch screen interface the relevant information. A
simple key press by the wizard or touch of an icon by a
child triggers the program to send the corresponding
behavior command to Pleo which in turn causes Pleo to
act out that behavior.

Results
The children understood the relation between the
“thought bubble” screen and Pleo’s action with respect
to which part was being touched. They also understood
that touching appropriate parts of the screen could
actively control Pleo’s behaviors. Teaching Pleo
behaviors had the children very engaged throughout
the process. The children also remembered how to
access certain types of behaviors, e.g., touching the
head to access and activate the “Moo” sound of Pleo.
The children eagerly showed each other different tricks
Pleo could perform, “Look what he can do! [as they
touched the thought bubble screen to navigate and
activate desired behaviors]”. Many pairs started by
focusing on physically touching Pleo and gradually
moved on to interacting with the GUI once they had a
better understanding of the system. None of the
children completely ignored the GUI screen to focus
solely on physical play with Pleo. The children did seem
to understand the right hand region of the screen to be
the “memory bank.” When asked by the investigator to
explain what they thought the right hand region
represented, the children answered, “That’s what Pleo
knows.” However, the children did not use the editing

function of the “memory bank” to create sequences of
behaviors. Instead of waiting for the “sequence in
memory,” the children used the left side of the screen
to directly control and reinforce Pleo’s behaviors. They
seemed to interpret the “memory bank” as a log or
history, and not something to be acted upon.
Therefore, no procedural programming was observed.
The function of the memory bank should be made
clearer in the future and should perhaps include a “go”
function to cycle through the list without having to
touch the body part.

At the beginning of the play session, the children
seemed to understand the leaf as a reward they give to
Pleo to reinforce desired behavior. However, the
children quickly wanted to use the leaf to feed Pleo. In
a future version of the system, we could provide two
types of food: one to feed Pleo and the other to
positively reinforce learned behaviors (like a “treat”).

Technical Limitations
We did observe the children touching different body
parts at once or in rapid succession. Since Pleo is
designed to complete an action before it can execute
anything else, it will be unable to support commands in
rapid succession. To avoid complications with Pleo’s
communication buffer, we plan on implementing a
behavior monitor that allows for interruptions and can
quickly update new behaviors.

Discussion and Future Work
The evaluation of our initial design and prototype
provided us with ideas for future design and
implementation improvements. Specifically, the design
of the “memory bank” needs refinement. The interface
should invite children to edit and manipulate behaviors.

figure X. Two children interacting
with both the Pleo robot and the
“thought bubble” interface on the
touch screen. In general the children
started with the robot interaction, but
then moved to a combination of
physical interaction and GUI.

One idea is to make the list more like pages of a
storybook, showing a chain of events (e.g., and then
this happens, and then this happens after this, etc.).

Even with some technical glitches, the general premise
of having a physical robot and accessing its thought
bubble to control the character seems promising. In
response to the investigator’s question, “What does this
[pointing at the “thought bubble” screen] do?” one child
responded, “You can jump to it [pointing at different
behaviors on the screen] rather than [gestures
touching of Pleo robot].” When the investigator asked,
“Do you need both the screen and Pleo?” a couple of
children answered, “You can just take Pleo with you,
but [without the screen] it would be harder to see what
Pleo is thinking.”

Conclusion
We have presented a mixed physical and digital
programming environment for children to control
robotic characters. We have given children real-time
access to what goes on in the robotic dinosaur’s head
so that they could better understand the process as
well as what behaviors they can change or control.
Children knew that they could cuddle and interact with
Pleo just like a regular stuffed animal, but it was also
clear to the children which part of their touch was
recognized by Pleo, and what Pleo could do in response.
The “thought bubble” interface offered children an extra
lens through which they could tap into the process of
the robot’s activity, and also direct its behavior. We are
continuing to improve the interface and plan to conduct

a longer study to investigate types of storytelling play
children may engage in with programmable robotic
characters.

Acknowledgments
We thank the children and their parents, Caleb Chung,
John Sosoka, and Barbara Barza from UGOBE, and Matt
Bauer for his help with Dino-MITE.

References
[1] Guo, C. and Sharlin, E. Exploring the use of
tangible user interfaces for human-robot interaction: a
comparative study. In Proceeding of CHI ‘08. ACM
Press (2008), 121-130.

[2] Dino-MITE
http://www.bauerindependents.com/SUBMAIN/dinomit
e.htm)

[3] LEGO MindStorms
http://www.mindstorms.lego.com/

[4] MySkit
http://www.dogsbodynet.com/myskit/index.html

[5] Pleo.
http://www.pleoworld.com/

[6] pygame game development library
http://www.pygame.org/news.html

[7] pyserial
http://pyserial.sourceforge.net/

[8] Raffle, H., Parkes, A., Ishii, H. Topobo: A
Constructive Assembly System with Kinetic Memory, in
Proceedings of CHI ‘04. ACM Press.

[9] Resnick, M., Martin, F., Sargent, R. and Silverman,
B. Programmable Bricks: Toys to Think With. IBM
Systems Journal, vol. 35, no. 3-4, pp. 443-452.

