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Abstract

Many people are learning programming on their own using various on-
line resources such as educational games. Unfortunately, little is known
about how to keep online educational game learners motivated through-
out their game play, especially if they become disengaged or frustrated
with their task. Keeping online learners engaged is essential for learning
programming, as it may have lasting effects on their views and self-
efficacy towards computer science. To address this issue, we created a
coarse-grained frustration detector that provided users with customized,
adaptive feedback to help (re)engage them with the game content. We
ran a controlled experiment with 400 participants over the course of 1.5
months, with half of the players playing the original game, and the other
half playing the game with the frustration detection and adaptive feed-
back. We found that the users who received the adaptive feedback when
frustrated completed more levels than their counterparts who did not
receive this customized feedback. Based on these findings, we believe
that adaptive feedback is essential in keeping educational game learners
engaged, and propose future work for researchers and designers of online
educational games to better support their users.
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1 Introduction

Online learning has expanded in popularity with the continued growth of the
Internet. Online learning’s popularity can be attributed in part to a number of
advantages including flexibility, convenience, access, and low cost [9]. Online
courses enable students to access materials anytime and anywhere, allowing
them to work in an environment of their choice and at their own pace.

However, with the lack of in-person, face-to-face communications in online
courses, keeping students motivated to learn can be challenging. Critics have
long claimed that online learning is not as effective as traditional classroom
learning because of the absence of face-to-face interactions [4]. In a classroom,
teachers can gauge students’ reactions, body language, and behaviors to deter-
mine if and when students are engaged with the course content. Teachers can
use these cues to determine the best course of action to re-engage their students.
Unfortunately, many of these opportunities to encourage learners go unfulfilled
in online contexts (which are essential for any learning setting [1]), negatively
affecting learning outcomes [13]. In fact, lack of motivation has been identified
as a major cause of the high dropout rates in many online courses [19].

This project explores how feedback, based on users’ actions in an online,
educational programming game, might affect their motivation to complete more
levels. We tested our game with and without a new feedback system with
400 new users, tracking their progress through the game for one week each
(approximately 1.5 months total). Our goal was to test if we could successfully
detect learners’ frustration using models of past users, and how intervening
with adaptive feedback might help them re-engage with the content /levels.

2 Related Work

2.1 Dropouts in Introductory Computing Courses

It is well established that introductory programming (CS1) courses in higher
education have high dropout rates [11, 15]. A worldwide survey on comple-
tion rates reported that only an average of 67% students complete their CS1
course [3|. Further meta-analysis synthesizing 15 years of research on CS1 lit-
erature found that the mean pass rate of CS1 courses is 67.7% and that pass
rates have not improved over time [3, 23]. Online teaching resources, such as
Massive Open Online Courses (MOOCs) fare even worse, with recent numbers
reporting fewer than 5% of users completing the curricula they sign up for [10].
Although there are fewer statistics of dropout rates for discretionary online
learning settings such as educational games, it is reasonable to presume that
rates would be similar, or possibly worse since these online settings lack the
mechanisms that compulsory learning resources have to retain their students.



Much of the recent work on engagement in educational programming games
has been conducted by our research lab using Gidget [16] (www.helpgidget.org).
We investigated several strategies for preventing dropout (or abandonment), in-
cluding more personalized error feedback [17] and the inclusion of in-game as-
sessments [18], finding that features that anthropomorphized characters in the
game or confirmed understanding could significantly increase engagement [17].
Outside the domain of coding, some researchers have successfully built pre-
dictive models of learners’ motivational states in similar interactive learning
environments [7, 21]. These systems have found predictive success using fea-
tures related to help seeking, particularly the use of manuals and tooltips.

These and other efforts from prior work have several implications for coding
tutorial abandonment prediction. First, many of the most predictive features
in prior work have concerned social, instructional, and motivational factors, all
of which are difficult to detect using a coding tutorial, especially if the users
are using it anonymously. Moreover, the majority of studies have considered
dropout at the end of a course of learning, leaving open the possibility that
early detection of dropout is not feasible. That said, prior work suggests that
some behavioral features, particularly indicators of frustration, may be strong
predictors of either engagement or disengagement.

2.2 Detecting Frustration and Providing Feedback

There has been much work in modeling users and providing feedback to change
their behavior in the fields of learning science and instructional design. Baker
et al.’s work suggests the use of educational data mining and prediction mod-
eling to have educational systems display messages to encourage positive be-
havior [2]. Rodrigo & Baker identified several coarse-grained measures (e.g.,
consecutive compilations with the same edit location, the number of pairs of
consecutive compilations with the same error, the average time between com-
pilations and the total number of errors) to detect frustration by observing
students and analyzing their coding assignment logs [22]. Hattie & Timper-
ley’s survey of different kinds of feedback found that the most effective at
engaging learners were not those that were related to praise, rewards, or pun-
ishment, but rather informative messages relating to feedback about a task and
how to do it more effectively [12]|. Similarly, Kickmeier-Rust et al. found that
adaptive feedback (those relating to a user’s current context) helped facilitate
users’ learning and educational game immersion. However, some researchers
report the opposite effects, such as Conati & Manske, who found that adaptive
feedback based on learners’ actions in an educational game did not lead to
learning gains [8]. Our study builds on these previous works, using models of
past users’ behavior data to detect learners’ frustration as a basis to provide
an intervention to re-engage them with the content and complete more levels.



3 Method

We modified our free, introductory coding game, Gidget (see Figure 1), adding
a coarse-grained frustration detector that provided adaptive feedback. The
game has a total of 37 levels, where each level teaches a new programming
concept (e.g., variable assignment, conditionals, loops, functions, objects) using
a Python-like language [16, 18]. For each level, a player has to debug existing
code so that the protagonist character can complete its missions. The goal of
each level is to pass 1-4 test cases (i.e., statements that evaluate to ‘true’) upon
running the code. After code execution, the game displays which test cases
were successful and which ones failed. Each level introduces at least one new
programming concept, becoming progressively more difficult as players reach
later levels. Therefore, completing more levels means that users are exposed
to more programming concepts. Finally, the game also includes a set of help
features to help players overcome obstacles while coding on their own [16].

3.1 Modeling Frustration

Based on our literature review and our own prior work using machine learning
techniques to detect factors leading to game abandonment [24], we decided to
focus on frustration as a primary predictor for addressing disengagement and
game abandonment. We were inspired by prior work that found that coarse-
grained predictors performed better than fine-grained predictors at detecting
frustration [22] and used that model for our frustration detector. As a proof-
of-concept, we also decided to to limit the number of factors our disengagement
detector distinguished to reduce resource overhead (i.e., client/server process-
ing requirements). We selected a total of five signs of frustration (loosely
defined), with the first two adapted from Rodrigo & Baker’s work [22] and the
latter three adapted from our past work [24]:

1. deviations from the average number of consecutive code executions with
the same edit location

2. deviations from the average time between code executions

3. deviations from the average number of code executions

4. deviations from the average time spent on a level

5. deviations from the average time without any activity (idle time)

We defined deviation as values exceeding two standard deviations from the
calculated mean of any measure. This value was chosen because two standard
deviations away from the mean can be considered “unusual,” and we did not

want to provide feedback too often (which could result in the Clippy effect,
where users find the intervention bothersome rather than helpful [20]), or too
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Figure 1: The experimental condition, displaying an adaptive message (bottom-
center speech bubble) that is helping with a function call after detecting consec-
utive code executions with the same edit location.

rarely (in which case we miss opportunities to re-engage users). We calculated
all of the means and standard deviations for each of the frustration measures
above using a data set of 15,448 past users’ game logs. These game logs were
detailed, including individual players’ time spent on level, idle time, all of their
code edits, clicks, keystrokes, and execution button usage.

3.2 Adaptive Feedback

We took Hattie & Timperley’s [12] and Kickmeier-Rust et al.’s [14] approach
in providing users with customized, adaptive feedback relating to their current
context (as described in Section 2.2). Our objective was to provide users with
contextually relevant information to help (re)engage them with their current
task, without giving them exact solutions. To do so, we adapted the design of
the Idea Garden, a help system that examines and transforms users’ code to
provide relevant, but not exact, code examples [5, 6]. For all five cases described
above, we used the Idea Garden analysis methodology (described in [5]) with
the most recently executed or current version of the users’ code to generate
a customized, adaptive message for the user (see Figure 1). Longer messages
were split into multiple panels that the user could click through (forward and
backwards). Finally, because we did not want to directly interrupt the user
and allow them to ignore the message if they wanted to, we had the message



generator fade text into the protagonist character’s permanent speech bubble
at the bottom of the screen. Examples include:

e Hey, it looks like you're trying to call a function, checkBaskets (), which
doesn’t exist. Let’s make sure it’s spelled correctly (cAsiNG matters!) or
I can help you define it.

e You're almost there! The last thing you were working on was on Line J,
which seems to be inside a for loop block. Remember, for loops are
written in the following way to iterate through each item in the list:
for myPiglet in /piglets/s

goto myPiglet
Don’t forget to add tabs for code belonging in the for code block!

3.3 Participant Recruitment

We tested our system with a group of 400 online users who were randomly as-
signed to the regular version of the game (the control condition participants) or
a version of the game with the new feedback system (the experimental condition
participants) during account creation. The game logged each user’s condition
so that they would only see the game version they were assigned to, even when
coming back to play at a later time. The sign-up page required users to enter
their age, gender, e-mail address, state whether they have prior programming
experience, and agree/disagree to participating in a research experiment. For
the purposes of this study, we only selected users that indicated they were at
least 18 years old, had no prior programming experience, and were willing to
participate in a research experiment. We set the observation window to 7 days
(168 hours) per user to have a consistent timeframe for all users. To expedite
the account creation procedure, we did not collect other demographic informa-
tion such as ethnicity, geographical location, or education level. Participants
were required to read and digitally sign an online consent form that briefly
described the study. We were intentionally vague in our description of the
messages participants might see, stating that we were "testing various types of
messages to see how they might help players" to minimize any potential lead-
ing or biasing of participants focusing on specific types of messages. However,
we e-mailed all participants a copy of the study procedures 7 days after the
end of their individual observation window to debrief them, regardless of the
condition they were assigned to. Prior to the debrief message (one day after
their observation window ended) we sent an e-mail with a link to an optional
online questionnaire that asked participants to rate their agreement to the fol-
lowing three statements about their experience with the game on a scale from
1 (‘strongly disagree’) to 7 (‘strongly agree’):

1. The messages that Gidget provided helped me with my goals.



2. The messages that Gidget provided came up too often.
3. The messages that Gidget provided were distracting.

We intentionally under-specified messages (and their contents), so that par-
ticipants from both conditions could interpret what messages were on their
own. Our system e-mailed two different URLs containing the same questions
to their respective participants to distinguish responses between the conditions.

4 Results & Discussion

We provide quantitative results comparing the outcomes from our three groups
using nonparametric Chi-Squared and Wilcoxon rank sums tests with a = 0.05
confidence, as our data were not normally distributed. Our study was a
between-subjects design, with an even split of 200 participants in the control
condition group (aged 18-54; median 20), and 200 participants in the experi-
mental condition group (aged 18-55; median 20). Comparisons of demographic
data revealed that there were no significant differences between the control and
experimental conditions by age or gender (107 males, 88 females, and 5 other
or decline to state; and 102 males, 90 females, and 8 other or decline to state,
respectively). The key dependent variable in our study was engagement, which
we operationalized as the number of levels completed. We also examine the
participants’ responses to the optional questionnaire.

4.1 Experimental Condition Participants Complete More Levels

All participants completed at least four levels. The range of levels completed
in the control and experimental conditions were 4-37 (median 10) and 4-37
(median 13), respectively. We verified that all participants in the experimen-
tal condition saw messages from the new feedback system throughout their
time playing the game (with more occurring in later, more difficult stages).
There was a significant difference in the number of levels participants com-
pleted between the two conditions (W = 42385, Z = 1.986,p < .05), with the
experimental group participants completing more levels.

Since all participants were novice programmers, these results suggest that
something about interacting with the new feedback system (frustration detec-
tor and adaptive message generator), had a significant positive effect on the
experimental condition participants’ engagement and ability to complete more
levels in the game compared to the control condition participants.

4.2 TUnable to Compare Differences in Play Times

Next, we had planned to measure the differences in how long participants took
to complete the levels they passed. However, because everyone completed a



different number of levels and the range of completion times for each level
were vastly different, we would only able to compare the levels that all 400
participants completed (i.e., Levels 1-4) to see if there were any differences in
play times. However, we found that only a few (11 out of 200) participants in
the experimental condition received at least one of the new feedback system
messages during the first four levels. Therefore, we were unable to compare
the differences between the control and experimental group play times since
the majority of the experimental group (189,/200, or 94.5%) did not experience
anything differently from the control group for these common completed levels.

4.3 Experimental Group Agrees Messages Helped with Goals

Finally, we compared our optional questionnaire responses, which had a total
response rate of 10.25%, (19 control, 22 experimental). For our analyses, we
flipped the scales for Questions 2 and 3 since the statements were negative.

For Questions 1 and 2, our median scores for both conditions were 6 (range
4-7) and 4 (range 2-6), respectively. For Question 3, the control and experimen-
tal conditions were 3 and 4 (range 2-6), respectively. Additionally, we found a
significant difference between the control and experimental groups agreement to
Question 1 (x%(3, N = 41) = 8.299,p < .05). However, we did not find signifi-
cant differences between conditions for Question 2 (y?(4, N = 41) = 2.410,n.s.)
or Question 3 (x%(4, N = 41) = 1.385,n.s.)

We had not expected to find significant differences in our questions because
of the low response rate and were excited to find that the experimental group
users reported that their messages helped them with their goals—which was
the aim of this study. However, we need to explore this result further in future
work, as we did not specify exactly which messages in our questions.

5 Conclusion

Our findings show that adaptive feedback messages, triggered by a frustration
detector using coarse measures, can significantly improve users’ performance
in an educational game. In our study, our experimental group participants
(those with the frustration detector and adaptive feedback messages) completed
significantly more levels than their control group counterparts (who played the
game without these additional features). Researchers and educators for online
resources for teaching programming may benefit from adding these types of
frustration detection and adaptive feedback to their systems.

We have several limitations to our study. First, we recruited participants
who opted into a research study. These types of participants may already have
high motivation, and therefore may not be completely representative of the
larger population. However, we found that the participants in our two groups



were similar to each other, with no significant differences by age or gender.
Second, participants from both groups completed a different number of levels,
making it impossible for us to compare their usage of the new feedback system
(especially because the frustration detector was triggered more often in later
levels, which many participants did not reach). Third, we had a low ques-
tionnaire response rate in comparison to our full participant pool, which may
limit the generalizability of the findings. Future studies may ask participants
to complete all levels and everyone to fill out the questionnaire. Finally, we
also plan to measure learning outcomes (using pre-post tests) to determine how
this feedback system affects learners’ knowledge.

Our results from this proof-of-concept study shows that adaptive feedback,
triggered by coarse measures to detect frustration, are sufficient in increasing
online learners’ performance. Our future work will examine these outcomes in
more detail to determine what exactly is causing these effects, along with addi-
tional coarse frustration predictors, and possibly some fine-grained predictors.
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