
Autonomy-Supportive Game Benefits Both
Inexperienced and Experienced Programmers∗

Michael J. Lee and Ruiqi Shen
Department of Informatics

New Jersey Institute of Technology
Newark, NJ 07102

{mjlee, rs858}@njit.edu

Abstract

As more people turn to discretionary online tools to learn new skills
such as computer programming, exploring how to better support a wide
range of learners is becoming increasingly essential to train the next gen-
eration of highly skilled technology workers. In our prior work, users
with high learner autonomy complained that most online resources they
used to learn more programming did not provide them with the flexibility
they preferred to navigate through learning materials, locking them into
a set sequence of topics/concepts. To explore this, we implemented a
level-jumping feature into an online educational programming game. We
tested it with 350 new users, tracking their progress through the game
for 7 days each. We found that those with high learner autonomy did
use the level jumping feature more than those with low learner auton-
omy. We also found that males were more likely to use this new feature,
regardless of learner autonomy level, compared to their female counter-
parts. Finally, we found that those with low learner autonomy ultimately
completed more levels than their high autonomy counterparts, and that
this was particularly true of female learners (who completed the most
levels overall). Based on these findings, we believe that autonomous-
supportive features such as flexible navigation may be beneficial to all
users of online educational tools, and that encouraging its use by a wider
group of users (particularly females), may increase positive effects.

∗Copyright ©2021 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



1 Introduction and Related Work

With the continued influx of individuals turning to discretionary online learn-
ing learning resources such as Massive Open Online Courses (MOOCs), tutorial
sites, and educational games, learning more about how to support a wide range
of people with different preferences, experience, and learner autonomy, is essen-
tial to train the next generation of highly skilled technology workers. According
to educators and researchers, learner autonomy—the ability for one to control
their own learning [6]—plays a vital role in developing lifelong learners [3]. In
order to gain a better understanding of their autonomy, our past work explored
the experience of Computer Science (CS) learners’, particularly about learning
CS both online and in the classroom [14, 17]. We found that learners who
showed a high level of autonomy felt that they were not supported by the edu-
cational system(s) or teachers. For example, they complained that the online
systems they used did not give them enough freedom to explore on their own,
and that their teachers often failed to help them achieve their learning goals.
On the other hand, we found that learners who showed a low level of autonomy
felt that they needed extra guidance from their teachers and curriculum. Inter-
view results also indicated some patterns, for example, that learners with more
subject-area experience showed higher levels of autonomy than those with less
experience, and learners with a higher level of autonomy preferred to study us-
ing an autonomy-supportive system while those with lower levels of autonomy
preferred to study using a non-autonomy supportive system [13, 17].

Considering these past results and the role learner autonomy plays in devel-
oping lifelong learning, we believe that it is important to address the needs of
CS learners with different levels of learner autonomy. In particular, we found
in prior work [13, 16] that autonomy-supportive features (i.e., the freedom to
freely navigate to any portion of a course’s curriculum) in learning systems were
consistently requested by those with high learner autonomy. This was in con-
trast to those with low learner autonomy, who preferred much more structured
and linear pathways through a curriculum. In order to test how an autonomy-
supportive feature might affect learners (based primarily their level of learning
autonomy), we implemented a level-jumping feature into an online educational
programming game (see Figure 1). This is in contrast to most online learning
curriculums and MOOCs that we have encountered, which are often locked to
a specific sequence where later parts of the course are inaccessible until earlier
parts are completed. We tested the game with this new level jumping feature
with 350 new users, tracking their progress through the game for one week (7
days) each, spanning a total of 1.5 months.

2



Figure 1: A screenshot of the Gidget introductory programming game.

2 Method

2.1 The Gidget Educational Game

We modified our free introductory coding game, Gidget (www.helpgidget.org),
for this study. Gidget has a total of 37 core levels in its curriculum, where each
level teaches a new programming concept (e.g., variable assignment, condition-
als, loops, functions, objects) using a Python-like, imperative language [8, 10].
The objective of each level is to fix existing code to help the game’s protagonist
pass 1–4 test cases (i.e., statements that evaluate to true) after running the
code. Each level introduces at least one new programming concept, becom-
ing progressively difficult in subsequent levels. Therefore, users are exposed
to more programming concepts the farther they progress through the game.
Finally, the game also includes a set of help features to help players overcome
obstacles while coding on their own [7, 10]. This includes a frustration detector
that provides encouraging hints/messages to those that are struggling with a
level [9], and also auto-generates additional levels covering the same concept(s)
to provide additional practice [8].

Normally, the game follows a specific order of levels (i.e., curriculum), build-
ing on content from previous levels. While the user interface shows the se-
quence/map of all core levels in the game (and indicating the players’ current
level; see top of Figure 1), it only allows the player to jump back to any previ-
ously completed level (at any time during game play). Players can also jump

3



Figure 2: Closeup of the level selection map. The current level shows Gidget,
completed levels are solid circles, uncompleted levels are hollow circles, and
uncompleted exam levels are hollow circles with a check mark.

forward to the last level they have reached sequentially, but no further. All
levels are visualized on the map as circles, with completed levels shown as solid
circles, incomplete levels shown as hollow circles, and incomplete exam levels
(explained in [10]) shown as hollow circles with a check mark. Finally, the
currently loaded level is indicated with the Gidget character (see Figure 2).
Hovering the mouse cursor over an incomplete level does not show any visual
change, and clicking on an incomplete level does not do anything.

For this study, we modified the level-selection interface to allow players to
jump to any level in the game, regardless of level completion status. Placing the
mouse cursor on any other level grays out the current level’s Gidget character
and places a solid Gidget character that slowly rocks back-and-forth on that
level marker. Clicking on the rocking character immediately jumps the player
to that level. In addition, to keep the overall experience consistent across
all users of this study, we disabled the game’s auto-generated extra levels (as
described in [8]). This was to prevent cases where someone might jump to a
difficult level, trigger the frustration detector, then offered multiple additional
practice levels covering the same concept(s). Finally, we specifically pointed
out this level-jumping feature in the game’s introductory on-boarding tutorial
(which all players see the first time they load the game), explaining the user
interface, interaction method, and the level-jumping feature.

2.2 Participant Recruitment

Our goal was to observe if and how players would use the level-jumping features
within the game. We evaluated our system with a group of 350 new users of
the game. The sign-up screen asked users for their age, gender, e-mail address,
a checkbox indicating whether they have prior programming experience, and a
checkbox (with link to consent form) asking if they were willing to participate
in a research experiment. We intentionally did not define "programming" or
"programming experience" as we determined in past studies [14, 15] that using
a specific definition could potentially confuse or discourage participants who
might consequently miscategorize themselves or self-select out of participation
even though they meet our eligibility criteria. Mirroring a previous study [14],
we asked those who indicated that they had prior programming experience
two additional questions: how many years of programming experience they
had (rounded up to the nearest .5 or integer), and how they would rate their

4



programming experience level on a four-level scale (beginner, intermediate,
advanced, and professional). We used these two measures to assign each player
a learner autonomy score from 1 (low learner autonomy) to 3 (high learner
autonomy) based on our prior work [14], which showed that these two measures
were significantly correlated with learner autonomy. This prior study combined
subsets of the Learner Autonomy Scale created by Macaskill and Taylor [11]
and the E-learning Autonomy Scale developed by Firat [5], and demonstrated
that more years of experience and higher self-rating in programming experience
has a positive relationship with autonomy level.

For this study, we only selected users that indicated they were 18+ years
and willing to participate in a research experiment. Adapting the methodology
from our prior studies [8, 9], we set the observation time to 7 days (168 hours)
per user to have a consistent evaluation window for all users. To promote quick
account creation, we did not collect other demographic information such as eth-
nicity, geographical location, or education level. Participants were required to
read and digitally sign an online consent form that briefly described the study.
We were intentionally vague in our description of the level-jumping feature,
stating that we were "testing new navigational features" to minimize potential
leading or biasing of participants to pay attention more to that specific part of
the interface. However, we debriefed all participants of the study procedures 7
days after the end of their individual observation window, by e-mail.

3 Results & Discussion

We report on our quantitative results comparing our participants’ outcomes—
split by demographic and experience features—using nonparametric Wilcoxon
rank sums tests, Chi-Squared tests, or simple linear regression, with a con-
fidence of α = 0.05, as our our data were not normally distributed. For all
post-hoc analyses regarding gender data, we use the Bonferroni correction for
three comparisons: (α = .05/3 = 0.0167).

The study included 350 participants (aged 18–58; median 20). As a whole,
our participants were composed of 180 females (51.4%), 161 males (46%), and 9
‘not listed’ or ‘decline to state’ (2.6%). In addition, 255 (72.9%) indicated that
they did not have any prior programming experience, and 95 (27.1%) indicated
that they had at least .5 years of prior programming experience (latter’s range
.5–33; median 2). We operationalized our key dependent variables, engagement
and jumping, as the number of levels completed and the number of times the
jumping feature was used, respectively.

5



3.1 High Learner Autonomy Players Use the Jumping Feature More

We found that all learners used the level jumping feature at least 2 times,
regardless of having low learner autonomy (range 2-17; median 3) or high
learner autonomy (range 2-37; median 8). Looking at the data more closely, we
found that there was a significant difference in the number of levels participants
completed by autonomy level (W = 26703, Z = 12.370, p < .05), with the high
autonomy learners using the feature more than their counterparts.

We believe that all learners jumped at least two times because this feature
was specifically mentioned in the on-boarding game tutorial, and at the mini-
mum, someone using the feature to jump forward (first jump), would need to
jump back to their original level (second jump). Next, our finding that high
autonomy learners use the jumping feature more often than their low autonomy
counterparts verifies our hypothesis (based on our previous work in [14]) that
those with more experience (and therefore higher learner autonomy) would use
and benefit from this jumping feature. Unlike low autonomy (inexperienced)
learners, who do not necessarily know much about the topic and therefore
would be better served learning programming concepts in a sequenced curricu-
lum, the goal of high autonomy (experienced) learners may be to review or
improve on their existing programming skills, and/or to look for programming
resources. Therefore, they may be more likely to use the jumping feature to
browse through the different parts of the curriculum quickly, being more in
control of their learning.

3.2 Males Use the Jumping Feature More

We found a significant difference in usage of the jumping feature by gender
(χ2(2, N=350)=17.226, p<.05). Doing post-hoc analysis with the Bonferroni
correction, we found that males used the jumping feature significantly more
overall than their female counterparts (W=42.307,Z=4.109,p<.05/3). This
result was independent of low learner autonomy (χ2(2,N=255)=6.1464, p<.05)
or high learner autonomy (χ2(2,N=95)=6.1583, p<.05) in programming.

This result was not too surprising, as prior research [2] has shown that
compared to females, males are statistically more likely to use selective in-
formation styles (following the first promising information, then potentially
backtracking) [12], have lower risk aversion (be less wary of consequences) [4],
and more willing to tinker (playfully experiment) [1]. Based on this, we be-
lieve that our male players were more likely to use the jumping feature simply
because it was available in the interface (and also mentioned in the tutorial).

6



3.3 Low Autonomy (Female) Learners Complete More Levels

Next, we explored if there was a difference in the number of levels participants
completed. This is not a completely fair comparison, as everyone may have
encountered levels in a different sequence (with later levels being considerably
more difficulty than earlier levels) because of the jumping feature.

We found that low autonomy learners completed significantly more levels
compared to their high autonomy counterparts (W = 15002.5, Z = −1.987, p <
.05). Further analysis revealed that there was a significant different in the
number of levels completed by gender within the low autonomy group (χ2(2,
N=255)=43.3806, p<.05). A post-hoc analysis with the Bonferroni correction
showed that the low autonomy group females completed significantly more lev-
els compared to their male counterparts (W=-61.579,Z=-6.655,p<.05/3). We
calculated a simple linear regression to predict level completion based on jump-
ing behavior. Within the low autonomy group, we found a positive relationship
between these variables (F (1, 253) = 255.290, p < .05), R2 = .502). Examining
this more closely, we found that that this affect was strongest with females,
where females in the low autonomy group who jumped more often completed
more levels (F (1, 144) = 206.433, p < .05), R2 = .589).

This result supports our hypothesis discussed in Section 3.1. The goal of
high autonomy (experienced) learners may be to review or improve on their
existing programming skills, and/or to look for programming resources. If high
autonomy learners were using the level jumping feature primarily to explore
what programming concepts the game curriculum covered, it would explain
why they did not necessarily stay to solve/complete those levels. On the other
hand, a low autonomy (inexperienced) learner’s aim in playing a programming
game is more likely to learn new things, and most or all of the programming
concepts would be new to them. Therefore, whether or not they jump through
the curriculum, less experienced learners have more incentive to complete levels.
Perhaps those low autonomy learners that jump around the levels have a better
idea of what is coming next (and also gain additional insights from the broken,
starting code each level provides), and therefore more successful in completing
levels. Most surprisingly, although our female participants were most likely
not to use the jumping feature, those that did went on to be the individuals
that completed most (or all) of the game levels. Females who did decide to use
the jumping feature may have jumped back and forth between levels as a com-
prehensive information processing problem-solving strategy [2, 12], where they
used the jumping feature to preview what was coming up, thereby gathering
fairly complete information about the entire system before proceeding.

7



4 Conclusion

Our findings show that both high and low autonomy learners (particularly
males), used the level-jumping feature, with the former using this feature sig-
nificantly more than the latter. We also found that high autonomy learners
tend not to complete the levels they jump to, and that they complete signifi-
cantly fewer levels overall compared to their low autonomy counterparts. We
also found that the few low autonomy female learners who used the jumping
feature readily, also ended up completing more levels than any other group.
Designers for online resources teaching programming may benefit from allow-
ing all users to skip around and explore the curriculum, instead of locking them
into a specific sequence. They may also do well in encouraging more of their
learners (especially females) to use these types of jumping features to have
them preview and better prepare for what is coming later in the curriculum.

We have several limitations to our study. We recruited participants who
opted into a research study while signing up for an educational game. These
participants may already have high motivation, and therefore may not be com-
pletely representative of the larger population. Next, we asked participants to
self-report their years of programming experience and also to rate their own
programming expertise. Participants may have different criterion for these se-
lections and therefore may have led to inconsistencies in our user groupings.
The groupings themselves may not account for all the different nuances of expe-
rience and/or learner autonomy. For future work, we could use more objective
measures such as quizzes to test the skill level of participants as an alternative
measure to experience. In addition, we could use pre-post tests to measure
how this new jumping feature affects players’ learning outcomes, and collect
qualitative data from participants through questionnaire or interviews.

Our study results show that both high autonomy and low autonomy learners
use the level-jumping feature (presumably to preview levels), and that although
low autonomy users are less likely to utilize this feature, those that do are es-
pecially successful in completing more levels (particularly females). Our future
work will examine these outcomes in more detail, and gather complementary
qualitative data, to isolate the features that are causing these effects.

5 Acknowledgements

This work was supported in part by the National Science Foundation (NSF)
under grants DRL-1837489 and IIS-1657160. Any opinions, findings, conclu-
sions or recommendations are those of the authors and do not necessarily reflect
the views of the NSF or other parties.

8



References

[1] Laura Beckwith, Cory Kissinger, Margaret Burnett, Susan Wiedenbeck, Joseph
Lawrance, Alan Blackwell, and Curtis Cook. Tinkering and gender in end-user
programmers’ debugging. In ACM CHI, pages 231–240, 2006.

[2] Margaret Burnett, Simone Stumpf, Jamie Macbeth, Stephann Makri, Anicia
Peters, and William Jernigan. Gendermag: A method for evaluating software’s
gender inclusiveness. Interacting with Computers, 28(6):760–787, 2016.

[3] Philip C Candy. Self-Direction for Lifelong Learning. A Comprehensive Guide
to Theory and Practice. Eric, 1991.

[4] Thomas Dohmen, Armin Falk, David Huffman, Uwe Sunde, Jürgen Schupp, and
Gert G Wagner. Individual risk attitudes: Measurement, determinants, and
behavioral consequences. J. of the European Econ. Assoc., 9(3):522–550, 2011.

[5] Mehmet Firat. Measuring the e-learning autonomy of distance education stu-
dents. Open Praxis, 8(3):191–201, 2016.

[6] Henri Holec. Autonomy and foreign language learning. Eric, 1979.
[7] Michael J Lee. How can a social debugging game effectively teach computer

programming concepts? In ACM ICER, pages 181–182, 2013.
[8] Michael J Lee. Auto-generated game levels increase novice programmers’ en-

gagement. The Journal of Computing Sciences in Colleges, 36(3), 2020.
[9] Michael J Lee. (re)engaging novice online learners in an educational program-

ming game. The Journal of Computing Sciences in Colleges, 35(8), 2020.
[10] Michael J Lee, Amy J Ko, and Irwin Kwan. In-game assessments increase novice

programmers’ engagement and level completion speed. In ACM ICER, 2013.
[11] Ann Macaskill and Elissa Taylor. The development of a brief measure of learner

autonomy in univ. students. Studies in Higher Education, 35(3):351–359, 2010.
[12] Joan Meyers-Levy and Barbara Loken. Revisiting gender differences: What we

know and what lies ahead. J. of Consumer Psychology, 25(1):129–149, 2015.
[13] Ruiqi Shen. Interactive computer tutors as a programming educator: Improving

learners’ experiences. In IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1–2. IEEE, 2020.

[14] Ruiqi Shen, Joseph Chiou, and Michael J Lee. Becoming lifelong learners: Cs
learners’ autonomy. J. of Computing Sciences in Colleges, 35(8):267–267, 2020.

[15] Ruiqi Shen and Michael J Lee. Learners’ perspectives on learning programming
from interactive computer tutors in a mooc. In IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 1–5. IEEE, 2020.

[16] Ruiqi Shen, Donghee Wohn, and Michael Lee. Programming learners’ percep-
tions of interactive computer tutors and human teachers. International Journal
of Emerging Technologies in Learning (iJET), 15(9):123–142, 2020.

[17] Ruiqi Shen, Donghee Yvette Wohn, and Michael J Lee. Comparison of learning
programming between interactive computer tutors and human teachers. In ACM
Conference on Global Computing Education (CompEd), pages 2–8, 2019.

9


