
Auto-Generated Game Levels Increase Novice
Programmers’ Engagement∗

Michael J. Lee
Department of Informatics

New Jersey Institute of Technology
Newark, NJ 07102

mjlee@njit.edu

Abstract

A significant number of novices are learning programming using var-
ious online resources. Unfortunately, it is highly likely that these first-
time learners will encounter obstacles that are too difficult to overcome
on their own, especially as they reach more complicated concepts. Keep-
ing these online learners engaged with the content is essential for them
to learning programming, as their experience may have long-term effects
on the way they view computing. One possible way to address this issue
is to detect when a learner is having difficulties with a concept, provide
them with automated help and encouragement, and present them with
opportunities for more practice. For struggling learners, more practice
will help them better understand the concept(s), and prepare them for
later topics. We tested this by modifying an existing programming game,
building on its existing frustration detector to provide learners with extra
levels for more practice when necessary. We ran a controlled experiment
with 400 participants over the course of 1.5 months. We found that
the users who received extra levels when frustrated completed more core
levels than their counterparts who did not receive these additional op-
portunities for more practice. Based on these findings, we believe that
adaptive opportunities for more practice is essential in keeping educa-
tional game learners engaged, and propose future work for researchers
and designers of online educational games to better support their users.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

1



1 Introduction and Related Work

Over the last decade, there has been a significant increase in the number of
novices learning programming on their own using various online resources such
as Massive Open Online Courses (MOOCs) and educational games. However,
critics have long claimed that online learning is not as effective as traditional
classroom learning because of the absence of face-to-face interactions [5]. At-
trition rates in introductory programming (CS1) courses may support these
criticisms, with a worldwide survey showing that in-person CS1 classes and
MOOCs have a 33% [3] and 95%+ [6] dropout rate, respectively.

The relatively higher retention rate for in-person courses may be partially
explained by the personalized feedback students receive from their teachers. In
a classroom, teachers can use various cues to determine the best way to help
their students, such as giving them additional questions or practice. Unfortu-
nately, many of these chances to help learners go unfulfilled in online contexts,
which can negatively affect learning outcomes [7] and engagement [13]. In fact,
studies have identified that a lack of motivation is a root cause for high dropout
rates in online courses [13]. Without the help of more experienced individu-
als such as teachers, keeping students motivated to learn can be challenging,
especially if they encounter obstacles that they cannot overcome on their own.

We may be better able to provide online learners with additional help and
practice by adapting to their needs. For example, a system could detect when
learners are having difficulties with a problem (i.e., frustrated), give them en-
couraging and helpful feedback hints, and provide them with an opportunity
for more practice on the same type of problem(s). The idea of adaptive tech-
nology in educational systems is not new. Standardized testing such as the
Graduate Record Examination (GRE) and the Graduate Management Admis-
sions Test (GMAT) use Computerized Adaptive Testing (CAT) that adapts to
test-takers’ ability level by determining which question to ask next based on
the correctness of the previous question [15, 22]. However, this type of on-
the-fly adaptation might work well for individual users, but may be difficult to
implement in classes with multiple students learning the same content at the
same time. Course curricula are usually preplanned and difficult to deviate
from once a class has started. Although teachers may have some flexibility to
modify in-person course content in an ad-hoc manner, they have to consider
that changing something will affect all of the students in the class. On the
other hand, while online learning resources such as MOOCs, tutorials, and
games also typically have fixed content/curriculum, many also have options
for learners to access content at their own leisure and pace, without affecting
other learners’ experience in the same course.

We set out to create and evaluate a system that overcomes some of these
limitations in current learning resources, providing an online curriculum that

2



Figure 1: A screenshot of the Gidget introductory programming game.

adapts to the needs/skill of each individual player within an educational game.
This project explores if extra automatically-generated levels, triggered by users’
performance on previous levels, affects their motivation to complete more levels
in an online educational programming game. We tested our game with and
without this feature with 400 new users, tracking their progress through the
game for one week (7 days) each, spanning a total of 1.5 months.

2 Method

2.1 The Gidget Educational Game

We modified our free, introductory coding game, Gidget (helpgidget.org), for
this study. The game has a total of 37 levels, where each level teaches a new
programming concept (e.g., variable assignment, conditionals, loops, functions,
objects) using a Python-like, imperative language [8, 11]. For each level, a
player must fix existing code to help the game’s protagonist. The objective
of each level is to pass 1–4 test cases (i.e., statements that evaluate to true)
after running the code. After the code runs, the game shows which test cases
failed and succeeded. Each level introduces at least one new programming
concept, becoming progressively harder in subsequent levels. Therefore, users
are exposed to more programming concepts the farther they progress through
the game. Finally, the game also includes a set of help features to help players
overcome obstacles while coding on their own [8], including a coarse-grained
frustration detector that provides encouraging hints/messages to those that
are struggling with a level [9]. For this study, we extended the game’s existing

3



frustration detector (described in Section 2.2) to auto-generate and provide
learners with an extra level covering the same concept after they complete the
current level. Details of the level generation process are detailed in Section 2.3.

2.2 Frustration Detection

We reused the frustration detector from our past work [9], which utilized coarse-
grained predictors [17] to detect learners’ frustration. When the system detects
frustration, it provides customized feedback (and hints) to help re-engage the
learner. For this study, we extended this frustration detector to additionally
trigger an extra level-generator (described in 2.3). As outlined in [9], we defined
frustration as, deviations from the...

1. ... average number of consecutive code executions with the same edit location
2. ... average time between code executions
3. ... average number of code executions
4. ... average time spent on a level
5. ... average time without any activity (idle time)

Deviation was defined as values exceeding two standard deviations from the
calculated mean of any measure, as this threshold can be considered “unusual.”
Using a data set of 15,448 past users’ game logs, we calculated all of the means
and standard deviations for each of the frustration measures above. This data
set was detailed, including individual players’ time spent on level, idle time, all
of their code edits, clicks, keystrokes, and execution button usage in the game.

2.3 Extra Level Auto-Generation Program

Once we determined that a learner was struggling with a level (reaching the
threshold value of any of the measures listed in the previous section), we created
a system to auto-generate an extra level for them to play after completing
the current level. To help learners reach this newly generated level, the game
includes various help features, including customized messages that are triggered
by the frustration detector, which have been shown in our past works to help
learners successfully overcome the issue(s) with their current level [9, 10].

The creation of our level auto-generator was guided by the work done in
adaptive curricula within the intelligent tutoring and educational communities
(e.g., [4, 12, 16]). For example, Baker et al.’s intelligent tutoring system gave
off-task learners up to three additional exercises covering the same material,
which led to learning gains that were comparable to their on-task peers [2].
To create the actual levels, we used program synthesis, which has been used
by others in generating mathematical problems and proofs [1, 19], educational
games [20], and introductory program auto-graders [18]. Since the programs we

4



need to generate are mostly straightforward/uncomplicated, we create a repos-
itory of predefined programming patterns for different programming concepts,
and created a simple program synthesizer that generates levels that cover a
specific concept, along with unique variable and function names, and different
characters and obstacles that the player can interact with in the Gidget game.

In addition to the predefined programming patterns, we included a feature
to create different world layouts for each level to differentiate and make them
visually interesting for learners. The layout and puzzles of Gidget are similar to
that of Sokoban puzzles—problems where a character must move items within
a grid world to specific locations while avoiding environmental obstacles. We
used existing procedural content generation algorithms for making Sokoban
puzzles [14, 21] to generate solvable (i.e., there is at least one valid path to
get an item from one position to another) Gidget levels with obstacles and
objects for the character to interact with. Finally, because each generated
level must contain broken code for the learner to fix (which serves as the game’s
instructional material), after verifying the new level is solvable using automated
checks [14, 21], we used a scrambler (algorithm defined in [8]) to intentionally
"break" the working code by injecting a certain number of bugs.

2.4 Pilot Study

Our goal was to provide extra practice for concepts that players struggled
with, but not too many as to further disengage them. To better understand
how many additional levels the system should provide a player, we ran a pilot
study with 90 participants and up to 3 extra auto-generated levels for each
original level (as suggested by Baker et al. [2]). We recruited these participants
through the sign-up page of the game. When a new player was creating an
account, they had the option to opt-in to a research study, with a high-level
description of the research goals as not to prime them to the feature we were
testing. Participants were randomly assigned to a condition having 1, 2, or 3
levels, where the number indicates the number of extra levels each participant
would receive if they triggered the frustration detector. Each condition had 30
participants, with similar demographic characteristics.

We found that there was a statistically significant difference in levels com-
pleted among the three conditions (χ2(2, N = 90) = 6.1398, p < .05). Fur-
ther post-hoc, pairwise analyses revealed that the players in the 1-level con-
dition completed significantly more levels than both their 2-level condition
(W = 4.505, Z = −2.050, p < .05) and 3-level condition (W = 4.503, Z =
−2.213, p < .05) counterparts. This suggests that giving learners too many
additional levels covering the same concept disengaged them from the game,
leading them to quit. Based on these results, we modified our game to only
include a maximum of one extra auto-generated level per original game level.

5



2.5 Participant Recruitment

We evaluated our system with a group of 400 new users of the game who were
randomly assigned to the unmodified version of the game (the control condi-
tion) or the modified version of the game including the extra level-generator
(the experimental condition). The sign-up screen asked users for their age,
gender, e-mail address, a checkbox indicating whether they have prior pro-
gramming experience, and a checkbox (with link to consent form) asking if
they were willing to participate in a research experiment. For this study, we
only selected users that indicated they were 18 years old or older, had no
prior programming experience, and willing to participate in a research exper-
iment. For selected participants, the game recorded their game condition so
that they would only see the game version they were assigned to, even when
coming back to play at a later time. Adapting the methodology from one of
our prior studies [9], we set the observation time to 7 days (168 hours) per user
to have a consistent evaluation window for all users. To promote quick account
creation, we did not collect other demographic information such as ethnicity,
geographical location, or education level. Participants were required to read
and digitally sign an online consent form that briefly described the study. We
were intentionally vague in our description of the additional levels, stating that
we were "testing how extra practice can help with learning and engagement"
to minimize any potential leading or biasing of participants who might be sen-
sitive to potentially receiving additional levels (e.g., a user who perceives they
are getting many levels covering the same concept might become disengaged if
they feel this is a reflection of poor performance on their part). However, we
e-mailed all participants a copy of the study procedures 7 days after the end
of their individual observation window to debrief them, regardless of the con-
dition they were assigned to. Prior to the debrief message (one day after their
observation window ended), we sent an e-mail with a link to an optional online
questionnaire. This was only sent to the experimental group participants, as
only they experienced the extra auto-generated level feature. It asked them to
rate their agreement to the following statements about their experience with
the game on a scale from 1 (‘strongly disagree’) to 7 (‘strongly agree’):

1. Having multiple levels covering the same concepts kept me engaged with the game.
2. I would have preferred fewer levels covering the same concepts.
3. Having multiple levels covering the same concepts helped me me better understand

these concepts.

3 Results & Discussion

We report on our quantitative results comparing the outcomes from our two
groups using nonparametric Wilcoxon rank sums tests, with a confidence of

6



α = 0.05, as our our data were not normally distributed. The study used a
between-subjects design, with 200 participants in the control condition group
(aged 18-57; median 20), and 200 participants in the experimental condition
group (aged 18-60; median 20). We compared demographics between the two
groups, and found no significant differences between the control and experimen-
tal conditions by age or gender (99 males, 92 females, and 9 other or decline to
state; and 102 males, 89 females, and 9 other or decline to state, respectively).
We operationalized our key dependent variable, engagement, as the number of
levels completed. Because those in the experimental condition saw more levels
by design (i.e., a player in the experimental condition might be given extra
auto-generated levels for extra practice), for all comparisons between the two
conditions, we do not count the extra auto-generated levels, only comparing
the core levels (i.e., the main levels that all players would see, regardless of
condition) to measure how far they progressed in the game. We also report on
the participants’ responses to the optional questionnaire.

3.1 Experimental Group Complete More Core Levels

All participants in both conditions completed at least four levels. After ad-
justing for the auto-generated levels, the range of the core levels completed in
the control and experimental conditions were 4-37 (median 11) and 4-37 (me-
dian 13), respectively. We used the game logs to verify that all experimental
condition participants received at least one extra auto-generated level during
their play time (with more occurring in later, more difficult stages). There was
a significant difference in the number of levels participants completed between
the two conditions (W = 42401.5, Z = 1.8993, p < .05), with the experimental
group participants completing more core levels.

Since all of the participants indicated they were novice programmers, these
results suggest that something about interacting with the extra levels had a sig-
nificant positive effect on the experimental condition participants’ engagement
and ability to complete more core levels (and therefore expose themselves to
more concepts) in the game compared to their control condition counterparts.

3.2 Unable to Compare Differences in Play Times

Next, we had planned to measure the differences in completion times for the
core levels that participants completed. However, because everyone completed
a different number of levels, we would only able to compare the levels that all
400 participants completed (i.e., Levels 1-4) to see if there were any differences
in play times. Our logs indicated that only 9 of our 200 participants in the
experimental condition received at least one of extra practice level during the
first four levels, likely because the first few levels are very low in difficulty.

7



Therefore, we were unable to compare the differences between the control and
experimental group play times since the majority of the experimental group
(191/200, or 95.5%) did not experience anything differently from the control
group for these common, completed levels.

3.3 Experimental Group Agrees Extra Levels Kept Them Engaged

For our optional questionnaire responses to the experimental group, we had
a response rate of 25 out of 200 (12.5%). In our analysis, we we flipped the
scale for Question 2 as it was stated negatively. Although we did not have a
comparison group and response rate was low, we did find interesting trends.

For Question 1, which asked if the extra levels kept them engaged with the
game, our learners gave a median score was 6 (range 4-7). This is promising,
as the main goal for providing extra auto-generated levels was to give learners
extra practice so they would be better prepared to complete subsequent levels.
This also addressed one of our main concerns that giving learners more levels
covering the topics they had just been struggling with, might be disengaging.

For Questions 2 and 3, our median scores were 4 (range 2-7) and 3 (range
1-5), respectively. Question 2 asked if learners would have preferred fewer lev-
els covering the same concepts. Our data indicated that learners were neutral
about preferring more levels, confirming our findings in our pilot study, where
people did not necessarily want more levels. This makes sense, as too many
levels covering the same concept can become disengaging, but too few might
not help them with learning (even if they were not aware that the purpose of
the next level covering the same concept was to give them more practice). This
is further demonstrated in the outcome for Question 3, which asked learners if
having levels covering the same concept actually helped them learn. Our par-
ticipants were slightly negative from neutral, indicating that they might not
have believed that having the extra levels were useful for learning. However,
our game logs show otherwise, as the experimental group participants who ex-
perienced extra auto-generated levels completed significantly more levels than
the control group participants who did not have this feature (see Section 3.1).

4 Conclusion

Our findings show that extra practice levels, triggered by a frustration de-
tector, can significantly improve users’ performance in an educational game.
In our study, our experimental group participants (those who received extra
practice levels for concepts that they struggling with) completed significantly
more levels than their control group counterparts (who played the game with-
out this feature). Designers for online resources teaching programming may

8



benefit from detecting when learners are struggling with a concept, and give
them customized opportunities for extra practice on those same concepts.

We have several limitations to our study. We recruited participants who
opted into a research study while signing up for an educational game. These
participants may already have high motivation, and therefore may not be com-
pletely representative of the larger population. Next, we used on-the-fly auto-
generated levels, where different users received completely different levels even
for those covering the same concepts. Though these were generated by the
same algorithm, the unique differences between these levels may have had an
effect on learners, which also means it affected our results. However, we found
that most learners were able to finish the extra levels the system gave them,
and that they completed more subsequent levels, suggesting that the extra
practice helped them. Next, we only surveyed experimental group participants
and had a low overall response rate, which may limit the generalizability of the
findings. In future studies, we might ask participants to complete all levels and
questionnaire (adding free-response questions and/or conducting interviews to
collect qualitative data). Finally, for future studies, we could use pre-post tests
to measure how these new features affect players’ learning outcomes.

Our study results show that extra practice levels, triggered by coarse mea-
sures to detect frustration, are sufficient in increasing online learners’ level-
completion performance. Our future work will examine these outcomes in more
detail to isolate features that are causing these effects, and also how different
types of extra practice levels might contribute to further potential differences.

5 Acknowledgements

This work was supported in part by the National Science Foundation (NSF)
under grants DRL-1837489 and IIS-1657160. Any opinions, findings, conclu-
sions or recommendations are those of the authors and do not necessarily reflect
the views of the NSF or other parties.

References

[1] Chris Alvin, Sumit Gulwani, Rupak Majumdar, and Supratik Mukhopadhyay.
Synthesis of geometry proof problems. In AAAI Artificial Intelligence, 2014.

[2] Ryan Baker, Albert T Corbett, Kenneth Koedinger, Shelley Evenson, Ido Roll,
Angela Wagner, Meghan Naim, Jay Raspat, Daniel Baker, and Joseph Beck.
Adapting to when students game an intelligent tutoring system. In International
Conference on Intelligent Tutoring Systems, pages 392–401. Springer, 2006.

[3] Jens Bennedsen and Michael E Caspersen. Failure rates in introductory pro-
gramming. ACM SIGCSE Bulletin, 39(2):32–36, 2007.

9



[4] Peter Brusilovsky. A distributed architecture for adaptive and intelligent learning
management systems. In Workshop "Towards Intelligent Learning Management
Systems", Artificial Intelligence in Education. Citeseer, 2003.

[5] Mark Bullen. Participation and critical thinking in online university distance
education. Int. Journal of E-Learning & Distance Education, 13(2):1–32, 2007.

[6] Wenzheng Feng, Jie Tang, and Tracy Xiao Liu. Understanding dropouts in
moocs. Association for the Advancement of AI, 2019.

[7] Starr Roxanne Hiltz. Collaborative learning in asynchronous learning networks:
Building learning communities. 1998.

[8] Michael J Lee. Teaching and engaging with debugging puzzles. University of
Washington, Seattle, WA, 2015.

[9] Michael J Lee. (re)engaging novice online learners in an educational program-
ming game. Journal of computing sciences in colleges, 35(8), 2020.

[10] Michael J Lee, Faezeh Bahmani, Irwin Kwan, et al. Principles of a debugging-
first puzzle game for computing education. In IEEE VL/HCC, 2014.

[11] Michael J Lee, Amy J Ko, and Irwin Kwan. In-game assessments increase novice
programmers’ engagement and level completion speed. In ACM ICER, 2013.

[12] Yanyan Li and Ronghuai Huang. Dynamic composition of curriculum for per-
sonalized e-learning. FAIA, 151:569, 2006.

[13] Lin Y Muilenburg and Zane L Berge. Student barriers to online learning: A
factor analytic study. Distance education, 26(1):29–48, 2005.

[14] Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. Automatic making of
sokoban problems. In PRICAI, pages 592–600. Springer, 1996.

[15] Gregor M Novak, Andrew Gavrin, Christian Wolfgang, and Just-in-Time Teach-
ing. Blending active learning with web technology, 1999.

[16] Neil Peirce, Owen Conlan, and Vincent Wade. Adaptive educational games:
Providing non-invasive personalised learning experiences. In IEEE DIGITEL,
pages 28–35, 2008.

[17] Ma MT Rodrigo and Ryan S Baker. Coarse-grained detection of student frus-
tration in an introductory programming course. In ACM ICER, 2009.

[18] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feed-
back generation for introductory programming assignments. In ACM SIGPLAN,
pages 15–26, 2013.

[19] Rohit Singh, Sumit Gulwani, and Sriram Rajamani. Automatically generating
algebra problems. In AAAI Conference on Artificial Intelligence, 2012.

[20] Adam M Smith, Eric Butler, and Zoran Popovic. Quantifying over play: Con-
straining undesirable solutions in puzzle design. In FDG, pages 221–228, 2013.

[21] Joshua Taylor and Ian Parberry. Procedural generation of sokoban levels. In
INM Conference on Intelligent Games and Simulation, pages 5–12, 2011.

[22] Brenda Cantwell Wilson and Sharon Shrock. Contributing to success in an in-
troductory computer science course: a study of twelve factors. In ACM SIGCSE
Bulletin, volume 33, pages 184–188. ACM, 2001.

10


