
Gidget: An Online Debugging Game for
Learning and Engagement in Computing Education

Michael J. Lee
The Information School | DUB Group

University of Washington
Seattle, Washington, USA

mjslee@uw.edu

Abstract—As interest in acquiring programming skills continue
to increase, many are turning to discretionary online resources to
learn programming. However, researchers and educators need
more data to better understand who these learners are and what
their needs are to create useful and sustainable learning
technologies to support them. In my work, I investigate the
factors that make a learning game engaging for users, and
examine if playing through the game shows measurable learning
outcomes. The game will be released the public, giving us the
opportunity to collect large amounts of data. This data can be
shared with other researchers to improve discretionary online
tools such as educational games to support large-scale computing
education efforts designed for a wide-range of users.

I. INTRODUCTION

 Programming in the workplace is becoming more
commonplace for many of today’s careers. Recent surveys have
found that the computer literacy requirements have skyrocketed
in almost every field [5], and that while there are about 3
million professional programmers in the United States, over 13
million more people say they do programming at work, and
over 90 million use spreadsheets and databases [3,17]. As the
need for programming becomes more commonplace, many
people are turning to online discretionary learning resources to
learn computer programming. Learners report that they enjoy
these informal resources more than traditional classes because
they allow for flexibility in how they learn, they give learners a
better sense of retaining the material [1], and they are more
motivating, engaging, and interesting than traditional classroom
courses [6].

Unfortunately, many discretionary computing education
resources has been slow to adapt, focusing on engagement,
instruction, or scalability independently, but not on how to
combine the three. For example, computer science distance
education efforts such as Udacity.com, while scalable and
instructive, can be isolating for students [2] and have high
attrition rates. Similarly, Codecademy.com, an interactive
programming tutorial site, is scalable, but its effectiveness
remains an open question because of its lack of evidence based
instruction and assessment. Constructivist learning
technologies such as Alice and Scratch [7], while engaging, are
more difficult to scale because they require instructors at camps
and after-school programs to promote learning [19].

Moreover, the majority of online learning resources
typically share only the number of users that sign up for their
site and little else. They rarely release information regarding
the demographics of their users, what their users struggle with
or succeed on, how many people continue to stay active on the

site and actually complete all the tasks, or if users show any
measurable learning outcomes. Having large-scale data of this
kind of data would be invaluable to both researchers and
educators by better informing them how to improve resources
and materials for online computing education tailored to a wide
range of people.

We believe that debugging games can be used to address
these limitations by being engaging, instructive, and scalable
for the following reasons. Debugging is a fundamental
computational thinking skill and necessary for writing a correct
program [12]. Our approach will be the first learning
technology to teach debugging both explicitly before teaching
programming. Finally, games are now a universal form of play
for everyone: 91% of U.S. kids aged 2-17 play video games
[7], with the average gamer being 34 years old and of all
gamers in the U.S., 75% are 18 years or older and 40% are
female [8]. Games are now also widely thought of as effective
instructional tools [9], because they can provide concrete
feedback about success and failure at reaching well-defined
goals [10].

 We will use a puzzle game as an instrument to learn more
about the players of the game, including demographics, their
progress through the game, and their knowledge and use of
computing concepts before and after playing the game. To
solve the puzzles, players will need skills that mirror those in
debugging, including hypothesis formation and testing, mental
simulation of programs, and evidence gathering. These skills
will be taught explicitly through the game. Once the players
complete the game, they will have the option to create their
own levels using the Gidget language, which they can modify,
share, and remix with their peers.

Figure 1. The Gidget game, where learners first help a damaged robot fix its
programs by debugging its code (shown above), then create their own

programs after completing all the levels.

2014 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4799-4035-6/14/$31.00 ©2014 IEEE 193

II. BACKGROUND

Our work uses an online debugging game called Gidget
(shown in Figure 1) to teach programming concepts to novice
learners. Players help fix faulty code provided by a robotic
character to complete missions in the game. Several controlled
experiments with online users have shown that is possible to
translate debugging into engaging puzzle game mechanics that
is appealing to a broad demographic [14,15,16]. More than 600
people between the ages of 18 and 66 years and of various
genders, ethnicities, income-level, and education were recruited
online and played the game. In addition, we had a total of 44
teens (between the ages of 13-18 years) play the game in a lab
study and two summer camps [13].

Our work has demonstrated that novices can be highly
engaged in learning programming concepts through a
debugging game [14,15,16], that their initially negative
attitudes towards programming can be changed [4], and that
they can create their own programs after playing through the
puzzles [13]. Across our studies, we have found that novices
playing through our online game struggle largely with the same
programming concepts that others have difficulties with in
classroom settings [13,14]. However, we also observed that
these novices were able to create novel, complex programs on
their own by the time they completed the game [13].

III. KNOWLEDGE TESTS AND PUBLIC DEPLOYMENT

Gidget has been iteratively updated with improvements
based on findings from each of our previous studies. Next, we
plan to explicitly measure players’ learning after playing the
game to complement our findings that players find the game
engaging [14,15], even with integrated assessments throughout
the game [16]. Afterwards, we plan to launch the game online,
allowing us to collect user data at a potentially massive scale
that can be shared with fellow educators and researchers.

A. Knowledge Tests
Tests of knowledge will be incorporated as pre and post

tests to the gaming activity to measure learning. These will be
carefully crafted to fit within the storyline of the game, as prior
studies have shown that explicit assessments that are well-
integrated into the storyline and gameplay mechanics can be
engaging to players [16]. As players who complete the game
will likely have learned game-specific constructs, the
knowledge tests will be language agnostic (i.e., in pseudo-
code), which has been shown to be strongly correlated to a
native language test when designed correctly [18].
B. Public Deployment

Finally, releasing the game online will give us the
opportunity to attract many people to play the game and allow
us to collect large amounts of data about them. In addition to
the knowledge tests mentioned above, we can ask users about
their demographic information and attitudes towards
programming. In addition, we will be able to automatically
collect data that will allow us to better understand the
misconceptions that learners have, the strategies that they
attempt to resolve their problems, and the pathways they take
to succeed in understanding different programming concepts.

IV. DISCUSSION AND FUTURE WORK

As more people turn to discretionary learning resources
online, it will become increasingly important to understand the

needs of these users and how effective different educational
technologies are for teaching certain subjects or concepts. I aim
to show that a debugging game is an effective way to engage
and measurably teach novices programming concepts at a large
scale. Once deployed to the public, the data the game generates
will shed more insight into who is attracted to this kind of
learning technology, where they are coming from, and what
they learned by playing the game. These contributions will
provide a strong research base for the design of online
discretionary computing education pedagogy.

REFERENCES

[1] J. Boustedt, A. Eckerdal, R. McCartney, K. Sanders, L. Thomas, C.
Zander, “Students’ perceptions of the differences between formal and
informal learning,” ACM ICER 2011, 61–68.

[2] K. Brennan, A. Valverde, J. Prempeh, R. Roque, M. Chung, “More than
code: The significance of social interactions in young people's
development as interactive media creators,” ED-MEDIA conference
proceedings, 2011, 2147-2156.

[3] J. Carver, R. Kendall, S. Squires, D. Post, “Software engineering
environments for scientific and engineering software: a series of case
studies,” ACM/IEEE ICSE 2007, 550–559.

[4] P. Charters, M.J. Lee, A.J. Ko, D. Loksa, “Challenging stereotypes and
changing attitudes: the effect of a brief programming encounter on
adults' attitudes toward programming,” ACM SIGCSE 2014, 653-658.

[5] A. Chu, J. Huber, B. Mastel-Smith, S. Cesario, “Partnering with seniors
for better health: Computer use and internet health information retrieval
among older adults in a low socioeconomic community,” J. of the
Medical Library Association 2009, 97, 12–20.

[6] J. Cross, “Informal learning: rediscovering the natural pathways that
inspire innovation and performance,” Pfeiffer 2006.

[7] ESA. “Essential facts about the computer and video game industry.
Entertainment Software Association,” http://www.theesa.com/facts/pdfs/
ESA_EF_2011.pdf, retrieved June 1st, 2012.

[8] ESRB. “Video Game Industry Statistics,” http://www.esrb.org/about/
video-game-industry-statistics.jsp, retrieved Jan. 10, 2014.

[9] J.P. Gee, “What video games have to teach us about learning and
literacy,” Macmillan 2007.

[10] D.A. Gentile, J.R. Gentile, “Violent video games as exemplary teachers:
A conceptual analysis,” J. of Youth and Adolescence 2008, 9, 127–141.

[11] C. Kelleher, R. Pausch, “Lowering the barriers to programming: A
taxonomy of programming environments and languages for novice
programmers,” ACM CSUR 2005, 37(2),83-137.

[12] A.J. Ko, B.A. Myers, “A framework and methodology for studying the
causes of software errors in programming systems,” Journal of Visual
Languages and Computing 2005, 16, 1-2, 41-84.

[13] M.J. Lee, F. Bahmani, I. Kwan, J. Laferte, P. Charters, A. Horvath, F.
Luor, J. Cao, C. Law, M. Beswetherick, S. Long, M. Burnett, A.J. Ko,
“Principles of a Debugging-First Puzzle Game for Computing
Education,” IEEE VL/HCC 2014.

[14] M.J. Lee, A.J. Ko, “Personifying programming tool feedback improves
novice programmers’ learning,” ACM ICER 2011, 109-116.

[15] M.J. Lee, A.J. Ko, “Investigating the role of purposeful goals on novices'
engagement in a programming game,” IEEE VL/HCC 2012.

[16] M.J. Lee, A.J. Ko, I. Kwan, “In-game assessments increase novice
programmers' engagement and level completion speed,” ACM ICER
2013, 153-160.

[17] C. Scaffidi, J. Brandt, M. Burnett, A. Dove, B. Myers, “SIG: end-user
programming,” ACM CHI 2012, 1193-1996.

[18] A.E. Tew, “Assessing fundamental introductory computing concept
knowledge in a language independent manner,” Dissertation, Georgia
Institute of Technology, Atlanta, GA, 2010.

[19] H.C. Webb, M.B. Rosson, “Exploring careers while learning Alice 3D:
A summer camp for middle school girls,” ACM SIGCSE Technical
Symposium on Computer Science Education, 2001, 377-382.

194

