
 
Figure 1. Gidget’s level design mode (the Gidget character is circled). In this 
mode, learners design their own levels for others to solve. Players write code 
(left) that can include graphics (right), and see animated results (middle), and 
graphics for the level are on the right. 

 

Principles of a Debugging-First 
 Puzzle Game for Computing Education

Michael J. Lee 

1, Faezeh Bahmani 

2, Irwin Kwan 

2, Jilian LaFerte 

2, Polina Charters 

1, Amber Horvath 

2, Fanny Luor 

1, 
Jill Cao 

2, Catherine Law 

3, Michael Beswetherick 

1, Sheridan Long 

2, Margaret Burnett 

2, Amy J. Ko 

1 
University of Washington 
The Information School 

1 
Seattle, Washington, USA 

Oregon State University 
School of EECS 

2 and STEM Academy 

3 
Corvallis, Oregon, USA

 
 

Abstract—Although there are many systems designed to 
engage people in programming, few explicitly teach the subject, 
expecting learners to acquire the necessary skills on their own as 
they create programs from scratch. We present a principled 
approach to teach programming using a debugging game called 
Gidget, which was created using a unique set of seven design 
principles.  A total of 44 teens played it via a lab study and two 
summer camps. Principle by principle, the results revealed 
strengths, problems, and open questions for the seven principles. 
Taken together, the results were very encouraging: learners were 
able to program with conditionals, loops, and other 
programming concepts after using the game for just 5 hours.  

Keywords—Computer science education; debugging; summer 
camp; educational game; computational thinking; user study 

I. INTRODUCTION 
In recent years, computer programming has been proposed 

to be a skill that everyone can and should have. Sites like 
code.org popularize it as a path to jobs and prosperity, and 
government agencies such as the UK Department of Education 
have introduced plans to teach "rigorous computer science" to 
all children from 5 to 14 [35]. Programming languages and 
tools appear to be moving mainstream in a way that aspires to 
provide everyone with opportunities to learn programming at 
their own pace, without needing a teacher or classroom. 

There are many well-known tools to help people acquire 
programming skills independently. For example, Scratch [20] 
and Alice [14], now widely used, enable people to tell 
interactive stories, and sites like Codecademy.org allow users 
to follow simple tutorials to learn widely used languages such 
as JavaScript and Python. Unfortunately, these learning 
technologies have limitations that interfere with teaching at 
scale without instructors. Scratch and Alice, while quite 
effective at engaging learners in telling stories, require learners 
to somehow learn a language and a development environment 
before they can write their own programs. Consequently, these 
environments require teachers and other instructional resources 
to help learners succeed. At the other end of the continuum are 
tutorial tools such as Codecademy and games such as 
RubyWarrior, which ask learners to follow instructions typing-
in and running commands in a virtual terminal. Although these 
environments do present programming to learners, they 
provide little instruction about what is happening or why, and 
leave learners little room to explore. Moreover, they do not 
follow best practices for intelligent tutoring systems (e.g., 
providing detailed, immediate feedback [33]). 

We have also noticed that these kinds of environments 
communicate in ways that can be discouraging, often framing 
the computers as powerful and infallible entities, rather than as 
the efficient but unintelligent machines that they are. This 
framing can contribute to learners’ sense of failure if they do 
not initially succeed [17]. For females (or males) who view the 
culture of computing as elitist and view themselves as not good 
enough [13,21], feedback such as their programs being called 
“invalid” can be discouraging. 

In this paper, we present an alternative approach for 
learning technologies that teach computing, which we call a  
debugging game, instantiated in our online game, Gidget. This 
type of game requires players to debug existing programs 
before going on to create their own programs in the form of 
puzzle levels (as in Figure 1). We define our new approach 
through seven principles, which we present next. 

II. THE PRINCIPLES OF DEBUGGING GAMES 
The contribution of this paper is a principled definition of 

the debugging game approach embodied by Gidget. We 
derived seven principles by drawing from best practices in 
game design, educational technologies, learning sciences, help 
systems, and by observing our players interact with earlier 
iterations of our evolving game, Gidget. 

P1-debug. Debugging first: Encourage learners to learn 
programming concepts by debugging existing programs before 
creating new programs. Unlike many other educational 
technologies where creation occurs immediately [14,20], our 



approach provides nearly complete, but broken programs for 
learners to debug and fix before moving onto the more 
demanding task of creating new puzzles from scratch. 

P2-game. Game-oriented: To make the environment be 
engaging to those who want to be entertained by solving 
puzzles [8,17,18,19], not just engaging to those who want to 
learn programming, it should feel like a game, drawing upon 
games’ combination of interactivity, story, and objectives to 
benefit learning [12]. 

P3-fallible. Computers as helpful but fallible: Frame 
computers as helpful but fallible collaborators. This is in 
contrast to other educational environments, which often frame 
the compiler, interpreter, development environment, and other 
programming tools as all-knowing, authoritative figures, which 
can be discouraging for novice programmers [17]. 

P4-goals. Embedded goals: Give learners an explicit goal as 
scaffolding [28]. Provide one specific game goal – debugging 
faulty code – so that learners are focused and not distracted by 
additional objectives that can be distrating and negatively 
affect performance [2]. 

P5-instruction. Embedded instructions: Provide embedded 
instruction, with specific learning objectives, a planned 
curriculum, and an explicit, sequenced set of instructional 
materials and tasks [10,19]. This contrasts with open, creative 
environments, where learners are left free to explore at will 
[14,20,24]. 

P6-help. Scaffolded help: Deliver, on request, in-game help, 
including “Idea Garden” [7,8] help that provides incomplete 
examples, problem-solving strategies, and higher-level 
programming concepts to enable learners to help themselves. 

P7-gender. Gender inclusiveness: Females represent 42% of 
all video game players in the USA [11], but are seriously 
underrepresented in computing fields [25]. We aim at this 
problem by building on best practices for reaching both males 
and females (e.g., [6,34,36]), such as avoiding competitive 
objectives and using a gender-neutral protagonist. 

We call any learning environment that follows all of these 
principles a debugging game, which translates the task of 
debugging into game mechanics where players diagnose and 
fix defective programs. Given our definition and our debugging 
game principles, this paper investigates the following 
overarching research question: How do these seven principles 
influence the ways novice programmers learn programming 
concepts and solve programming problems? 

The specific aspects of this research question we 
investigate in this paper are: 

RQ1: What programming concepts did players struggle 
with when playing the game and when creating their own 
puzzle levels (programs)? This question aims to shed light on 
several of the above principles: how debugging (P1-debug) 
programs to achieve game-oriented (P2-game) goals (P4-
goals) affected how participants of both genders (P7-gender) 
struggled with programming concepts, the challenges they 
encountered later in creating puzzle levels, and how we present 
both embedded instructions (P5-instruction) and scaffolded 
help (P6-help).  

RQ2: What counterproductive problem-solving strategies 
did players try while playing the debugging game? This 
question targets how debugging game works for players 
solving problems on their own in the game (P1-debug), which 
includes presentation of the problems (P3-fallible, P4-goals), 
the instructions (P5-instruction) and scaffolded help (P6-help). 

RQ3: What kinds of puzzle levels did players create after 
playing the debugging game, and what programming 
concepts did they apply? This question targets the “from 
debugging to creating” aspect, which rests particularly on 
whether the earlier instruction, help, and debugging practice 
was sufficient for participants to then create interesting, 
complex new programs (P5-instruction, P6-help, P1-debug). 

III. THE GIDGET PROTOTYPE 
To investigate our research questions, we created a new 

version of the debugging game Gidget (Figure 1) that embodies 
the seven principles. Descriptions of earlier versions of Gidget 
have been reported elsewhere [17,18,19], so here we focus 
only on the details needed for this paper. 

A story motivates the game’s objectives: a chemical spill is 
endangering animals and a robot named Gidget has been 
deployed to clean up the area (P2-game). Unfortunately, 
Gidget was damaged and is only able to provide faulty code 
(P3-fallible). It is the player’s job to help the robot by 
diagnosing and fixing the faulty code (P1-debug) to satisfy 
each level’s mission goals (P4-goals) in the form of assertions 
about the game’s world state. 

The game has four “controls” to aid debugging: one step, 
one line, to end, and stop (P1-debug). These controls function 
similarly to conventional breakpoint debuggers, allowing 
players to run parts of the program or all of it, halt the program, 
and edit code at any time. When the learner uses one step or 
one line, Gidget provides a detailed explanation of each 
statement in the program, highlighting changes in the runtime 
environment. 

The game uses an imperative, Python-like language to 
teach a specific set of programming concepts (P5-instruction) 
across 7 units of 34 levels. Each level starts with Gidget briefly 
explaining the level’s objective and providing hints about 
which concepts to use. The presentation order of the concepts 
was designed iteratively based on curricula found in CS1 
textbooks, pilot testing with novices, and the authors’ 
cumulative experience teaching CS1 courses, following recent 
advice in educational game design [1]. Prior work [19] 
validated the curriculum as engaging to online adult 
participants (P2-game) that positively affected their attitudes 
towards programming, regardless of gender or level of 
education [9]. The units cover 1) game-specific constructs, 2) 
lists, 3) variables, 4) functions and objects, 5) Booleans and 
conditionals, 6) while and for each loops, with the final set 7) 
reviewing all of the concepts. Each unit ends with two 
assessment levels testing concepts covered in that unit [19]. 

Once the learner completes the curriculum (puzzle levels), 
they can use the level designer to create, save, modify, and 
share new levels. The level designer (Figure 1) is an interface 
that allows the player to write code for new levels’ behavior, 
add introductory text to the level, change the size of the world, 



set the goals and original code for the level, and view the 
usable graphics and sounds in the game. It also introduces the 
concept of event handling (i.e., having objects in the game wait 
for a condition before running a code block), which was not 
covered in the game curriculum.  

The game has four forms of scaffolded help (P6-help). 
First-time users see a 9-slide tutorial to learn the user interface 
for the game. The game has an in-game reference guide 
(available as a standalone help guide or as a tooltip on certain 
game elements), providing explanations and examples of each 
command in the language. The game’s editor also provides 
keystroke-level feedback about syntax and semantics errors, 
highlighting erroneous code in red and explaining the problem 
in Gidget’s speech bubble. Finally, on-demand ideas, 
examples, and strategies in the Idea Garden [8] style are 
prototyped as a combination of in-game tooltips and paper-
prototyped suggestions. 

Gidget’s graphics, text, and game goals were all designed 
to be gender-inclusive (P7-gender). The game’s story 
integrates socially relevant themes (i.e., cleaning a chemical 
spill and saving animals), helping a partner, and provides 
challenge through puzzles—all of which have been shown to 
appeal to both genders [29]. Gidget avoids game mechanics, 
like achievements or competition, that would possibly 
disengage females [37]. Following the premise that language 
impacts culture, it eschews violence-oriented terminology (e.g., 
players “remove” a game object instead of “destroying” it; 
players “run” or “stop” a program instead of “executing” or 
“killing” it) [23]. Finally, its collection of scaffolded help 
offers information in the “selective” and “comprehensive” style 
statistically favored by males and females, respectively [22]. 

IV. METHODS 
We conducted two formative studies: a laboratory think-

aloud study to record in-depth interactions with Gidget, and 
two summer camps to observe participants play puzzles and 
create levels over five days. We varied the levels, but not the 
concepts, between the two studies to 1) cover more concepts in 
one sitting during the think-aloud study, and 2) verify with 
think-aloud data that it was concepts that participants struggled 
with and not the way the information was conveyed. Both 
studies’ recruitment material avoided the word “programming” 
to prevent participants from self-selecting out. This paper 
focuses mainly on the summer camps since they included both 
puzzle play and level design, and triangulates against the think-
aloud study’s data where appropriate. 

A. Think-Aloud Study 
We recruited 10 college-aged teens (5 males and 5 females) 

for the one-on-one think-aloud laboratory study. Each was 
compensated $20. None had taken programming classes 
beyond an introductory course required of most majors. We 
recorded participants playing the game on their own, 
completing as many levels as possible from a condensed set of 
24 levels, for 81 to 97 minutes (median: 89.7). They did not 
use the level designer. The experimenter helped participants if 
they struggled for more than 3 minutes, so as to allow 
participants to proceed and provide data on more concepts. 

B. Summer Camps 
The two summer camps (which were identical, except as 

noted)  took place on college campuses in Corvallis, Oregon 
and in Seattle, Washington. Each camp ran 3 hours/day for 5 
days, for 15 hours total. About 5 hours were devoted to the 
Gidget puzzle curriculum; 5 hours to other activities such as 
icebreakers, guest speakers, and breaks; and 5 hours to creating 
new levels with the level designer and sharing them. 

We recruited 34 teens aged 13-19. The Oregon camp had 
10 males and 8 females with a median age of 13.5 years, and 
the Washington camp had 16 females with a median age of 14 
years. Participants were divided into same-gender pairs of 
similar age and were instructed to follow pair programming 
practices, which are known to benefit both males and females 
[36]. One male participant from the Oregon camp and one 
female participant from the Washington camp had attended an 
introductory programming camp in the past. All other 
participants reported having no prior programming experience. 

Camps used identical staff: a lead (male graduate student) 
led the activities and kept the camp on schedule; a researcher 
(female graduate student) recorded observations from a 
distance, and four helpers (all undergraduate females) 
answered questions, approached struggling participants, and 
recorded observations. The staff provided no formal instruction 
about Gidget or programming. Helpers recorded, using pre-
designed observation forms, instances when campers had 
problems, noting what the problem was, what steps they tried 
prior to asking for help, and what assistance resolved the issue. 

C. Coding and Analyses 
To categorize barriers participants encountered in both 

studies, we used two code sets from prior work (see Table 1). 
The algorithm design barriers are barriers that novice 
programmers encountered in end-user programming 
environments while designing algorithms [7]. The learning 
phase barriers are a sequence of barriers that novice 
programmers encountered when learning to program [16]. 

We coded each minute of the think-aloud transcripts and 
every observation instance from the camp forms using these 
code sets. Multiple codes were allowed. Two coders reached 
80% agreement on 20% of the data (Jaccard index), after which 
one coder finished coding. Though we had 1014 minutes of 
video, we excluded 146 minutes of tutorial and incomplete 
level footage, resulting in 868 minutes of video with 878 
barriers. From the camps, we recorded 793 observation notes, 
with 300 of these including at least one barrier. 

We identified problematic concepts during puzzle play by 
examining the levels with the highest number of barriers (see 
Figure 2). We also identified additional concepts participants 
struggled with during level design. We excluded 
understanding barriers from both analyses because unlike 
other barrier types that were related to one specific part or 
concept in the code, these were caused by misunderstandings 
of several concepts that could not be mapped exclusively to 
one programming concept. 



pn g 
Figure 2. The concepts in the most challenging levels during puzzle play. 
Concepts accounting for fewer than 25% of the barriers in each level are 
shown unlabeled in gray. 

V. RESULTS 

A. Struggles with Programming Concepts 
A.1) Programming Concepts During Puzzle Play 
 During puzzle play, participants struggled primarily with 
string equality, functions, and objects. 

The first conceptual difficulty that affected a number of 
camp participants was string equality, which was introduced in 
Level 14. The concept caused 8 out of 29 barriers (Figure 2). 
The goal of this level required participants to change the string 
argument of the “set” command so that it matched “Please 
help me Dog!”. Participants often struggled because they had 
a more relaxed perception of string equality than programming 
requires, often setting capitalization differently or omitting the 
exclamation point. This was corroborated with evidence from 
the think-aloud study, where 3 of the 10 participants also 
struggled with string equality and received help from the 
experimenter—one participant exclaimed, “Are you kidding 
me?” after receiving help. Since several participants appeared 
unable to recognize string equality issues, it should be 
explicitly taught in embedded instructions (P5-instruction) and 
supported with clear examples in scaffolded help (P6-help). 

Camp participants also had difficulties with functions, 
which were introduced in Level 20. They caused 22 out of 28 
barriers recorded for this level (Figure 2). The most common 
issue participants faced was understanding the difference 
between a function call and a function definition, and many 
omitted function calls, assuming that the function definition 
would actually run the function. Furthermore, participants from 
both studies had trouble matching function calls with their 
definitions (function names were either not defined, or spelled 
incorrectly) or passing the wrong type or number of 
parameters. Participants continued to struggle with these 
concepts in all subsequent levels dealing with functions, 
particularly in levels 23 and 34 (Figure 2).  

The third problematic concept was defining new objects, 
which caused 20 out of 45 barriers in Level 23 (Figure 2), 

making it the most difficult level in the game (Table 2). In the 
camps, participants often omitted the object definition or 
struggled with the constructor. In addition, think-aloud 
participants had difficulties working with functions 
encapsulated within an object, often omitting or erroneously 
deleting the object name before the function call:  

C14, minute 84: … Maybe I will just put transport. 
[Deletes /battery/ from /battery/:transport(Gidget,/battery/)] 

 These particular conceptual barriers have been reported in 
other studies as well [31], but they raise interesting design 
challenges for the debugging-first approach because of the 
tension between fun challenges versus instruction. Puzzles 
require intellectual engagement, but if the game provides too 
much instruction, the game is no longer a game, but just 
another tutorial—violating P2-game. Therefore, we must 
carefully balance the elements that are intellectually engaging 
versus the elements that can be frustrating work. Furthermore, 
some challenges may be trivially easy for some, and an 
insurmountable barrier to others, just as our data showed. 
Therefore, we should consider how the game can personalize 
the challenge, perhaps by providing context-sensitive P6-help, 
to balance engagement and instruction for a particular player. 

A.2) Programming Concepts During Level Design 
 Once they started level design, participants encountered 
two new concepts that caused new barriers in addition to the 
ones from puzzle play: event handling (the “when” statement) 
and  assertions (the “ensure” statement). Barriers regarding the 
event-handling concept were particularly high, contributing to 
65 out of 238 barriers (27%) during level design. 

The when statement, which is used for event-handling, runs 
a block of code when a condition is true. Participants had not 
seen any when statements during the puzzles and had a difficult 
time understanding how they differed from “if” (a selection 
barrier) and how to write a condition for a “when” (a use 
barrier). This appeared to stem from the small difference 
between the English words if and when, but the large semantic 
difference between the words in the game. Participants showed 
better understanding after helpers explained that if statements 
run code in sequence, and that when statements takes over 
control whenever its condition is satisfied, independent of 
where it is in the code. 

TABLE I. BARRIERS CODE SETS  (CAO ET AL. [7], KO ET AL. [16]). 

Algorithm Design Barriers  
Composition Did not know how to combine the functionality of existing 

commands  
More than once Did not know how to generalize one set of commands for one 

object onto multiple objects 

Learning Phase Barriers 
Design Did not know what they wanted Gidget to do 
Selection Thought they knew what they wanted Gidget to do but did not 

know what to use to make that happen 
Use Thought they knew what to use, but did not know how to use it 
Coordination Thought they knew what specific things to use, but did not 

know how to use them together 
Information Thought they knew why it did not do what they expected, but 

did not know how to check 
Understanding Thought they knew how to use things together, but the things 

did not do what was expected  

 



In addition, the assertions concept caused 16 out of 238 
barriers (6%). Assertions, implemented via the ensure 
statement, described the level goals. For example, ensure 
/gidget/:position = /button/:position means that Gidget 
needs to end up on the button to “win” the level. Participants 
saw ensure statements throughout the game as they played 
each level, but did not have to write one until they designed 
their own levels. Interestingly, although participants did not 
encounter many barriers in the "conditionals" unit (Table 2, 
Unit 5), and did not have many problems reading the goals in 
the form of ensure statements (there were only 15 design 
barriers in Table 2), they struggled writing their own ensure 
statements, as seen in previous work [26]. 

The barriers participants encountered with event-handling 
and assertions suggest that mere exposure to a programming 
construct in a program understanding task is not necessarily 
sufficient to teach a participant how to use these constructs 
independently to author new behaviors. Therefore, educational 
technologies that require any amount of authoring have to 
recognize and teach code reading and writing tasks as distinct 
skills. In Gidget, this might be accomplished by: (1) including 
units that effectively combine both program understanding 
tasks and program writing tasks in a unit to gradually make 
players comfortable with writing each construct as they are 
introduced (P5-instruction), and (2) providing clearer 
examples and hints that relate back to previously covered and 
related concepts such as conditionals when trying to teach 
assertions (P6-help). 

Finally, we compared the number of barriers males and 
females encountered within the Oregon camp and think-aloud 
studies, which had both genders represented (P7-gender). In 
the camp, females experienced many more barriers than males: 
four female teams experienced an average of 44.5 
barriers/team (126 barriers in puzzle play and 52 barriers in 
level design), and five male teams experienced an average of 
28 barriers/team (103 barriers in puzzle play and 37 barriers in 
level design). However, the think-aloud study showed no 
difference: both the 5 females and the 5 males averaged 6 
barriers/level. These contradictory results leave open the 
question of the approach’s gender-inclusiveness (P7-gender). 

B. Counterproductive Problem-Solving Strategies 
 Participants used a variety of strategcies in an attempt to 
overcome these barriers, many of which were 
counterproductive. We identified their problem-solving 

“antipatterns” using the “Rule of Three” in accordance with the 
patterns research convention [30]. Five problem-solving 
antipatterns emerged from our data. 

The “All-knowing computer” antipattern refers to a 
player’s failure to scrutinize the original code, even though 
they were told that it was filled with errors (as in P3-fallible). 
Instead, they largely trust that the original code is correct. The 
belief that the computer was always correct—observed also by 
Beckwith et al. [3] in a context that did not explicitly inform 
their participants that the code was incorrect—eventually led to 
many other barriers. In the think-aloud study, the original code 
from one level properly used a function call that was 
encapsulated within an object, and no one struggled with 
encapsulation. But, in a later level, 3 out of 4 participants who 
skimmed over the original code that used a function call with 
the wrong object struggled with the concept. 

In the “Reinvent the wheel” antipattern, a player deletes the 
original code without reading it and misses out on clues the 
code provides. Participants who used this antipattern could not 
benefit from one of the potential merits of the debugging-game 
approach, which is getting ideas from the original code. We 
observed that Team Heat from the camp used this antipattern in 
Level 23 and subsequently missed a clue indicating that there 
should be an object definition for every object, resulting in a 
selection barrier. When learners asked for help, the helper 
suggested that they restore the original code and read it. 

The “When all you have is a hammer, everything looks like 
a nail” antipattern is where a player persists in using 
programming constructs that worked for earlier levels but are 
no longer applicable. The reflection-in-action model [32] 
points to the importance of reframing when devising solutions. 
This rigidity was problematic for several participants: for 
example, recall in Level 14 that the explicit goal was to ask the 
dog “Please help me Dog!” for help with the task. It was 
necessary to use the set command to set a variable to that 
string, but 8 teams ignored the set command and tried to use 
previously learned commands (such as goto), leading to 9 out 
of 29 barriers in Level 14 (Figure 2). 

In the “I don’t want to try it” antipattern, participants avoid 
trying ideas. For example, We observed that Team Asian asked 
a helper whether multiple conditions could be used in an if 
statement and Team Heat asked if Gidget could grab multiple 
items. In both cases, the helper suggested they try it in the 
game to see what happens. 

TABLE II. NUMBER OF BARRIERS PER LEVEL AND THE PERCENT IMPROVEMENT (%IMP) IN BARRIERS FROM THE PUZZLE PLAY (PZ) TO LEVEL DESIGN (LD) IN THE 
SUMMER CAMPS. EACH COLUMN CONTAINS THE NUMBER OF BARRIERS IN THE  LEVEL. ALGORITHM DESIGN BARRIERS ARE SHOWN IN ORANGE (TOP TWO ROWS), 
AND LEARNING PHASE BARRIERS ARE SHOWN IN BLUE (FIVE MIDDLE ROWS AND THE SECOND-LAST ROW). ASSESSMENT LEVELS WERE NOT CODED AND MARKED 

WITH HYPHENS. DARKER COLORS INDICATE HIGHER COUNTS. 

 Unit 1 
move/grab 

Unit 2 
goto/list 

Unit 3 
variables 

Unit 4 
functions/objects 

Unit 5 
Bool/conditionals 

Unit 6 
loops 

Unit 7 
overview 

PZ
 

LD
 

To
ta

l  

%
IM

P 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 
Composition 0 0 3 0 0 - - 1 1 0 0 - - 0 0 2 0 - - 8 3 4 9 - - 2 2 3 5 - - 1 4 8 - - 1 - - 57 53 110 7 
More-than-once 0 0 0 0 0 - - 0 0 9 2 - - 1 0 2 0 - - 0 0 3 4 - - 0 0 0 0 - - 1 4 2 - - 4 - - 32 19 51 41 
Design 0 0 0 0 0 - - 0 4 0 1 - - 3 0 1 0 - - 1 0 0 2 - - 0 0 0 0 - - 1 1 0 - - 1 - - 15 2 17 87 
Selection 9 0 3 0 1 - - 1 5 9 2 - - 12 7 2 2 - - 10 2 3 16 - - 1 0 2 3 - - 3 3 6 - - 4 - - 106 65 171 39 
Use 3 0 2 0 0 - - 1 2 7 3 - - 13 1 5 3 - - 6 4 3 12 - - 2 1 0 6 - - 1 5 7 - - 3 - - 90 74 164 18 
Coordination 0 0 0 0 0 - - 1 0 0 0 - - 0 0 1 0 - - 3 3 3 2 - - 2 2 2 5 - - 1 2 6 - - 1 - - 34 25 59 26 
Information 0 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 0 - - 0 0 0 - - 0 - - 0 0 0 0 
Subtotal 12 0 8 0 1 - - 4 12 25 8 - - 29 8 13 5 - - 28 12 16 45 - - 7 5 7 19 - - 8 19 29 - - 14 - - 334 238 572 29 
Understanding 6 1 3 0 4 - - 3 7 5 4 - - 15 7 3 1 - - 13 8 4 9 - - 0 3 4 9 - - 2 5 10 - - 5 - - 131 20 151 85 
Grand total. 18 1 11 0 5 - - 7 19 30 12 - - 44 15 16 6 - - 41 20 20 54 - - 7 8 11 28 - - 10 24 39 - - 19 - - 465 258 723 45 

 
 



 
Figure 3. Camp participants most often created puzzle levels to challenge 
other players. Team Mustache developed this level where Gidget had to 
rescue animals, remove a meteor, and more. The code fragment contains 
objects, the event-driven when statement, and a conditional statement. 

Finally, in the “I’ll use it as it is” antipattern, a player fails 
to adapt an existing example (e.g., from a tooltip or help sheet) 
to its particular context. This demonstrates a lack of analogical 
reasoning [27] in contrast to experienced programmers who are 
comfortable adapting examples [5]. In one instance from the 
think-aloud study, a participant looked up an example: 

C10, minute 28: I am looking at nickname. Should I nickname the kitten? 
[Reads the “nickname” tooltip and clicked on “name” in the tooltip] 
I want to see an example. There is an example here … Ok. So, I found an 

example saying “say /gidget/:name”. So, I’m going to try it again 
with kitten. 

This prompted him to change the set command, which was 
correct, to the incorrect say from the example. 

One possible explanation of the problem-solving 
antipatterns “All-knowing computer”  and “Reinvent the 
wheel” may be that our participants wanted to avoid reading 
code, which could interfere with their learning how to 
understand programs. A debugging-game approach may need 
to incentivize program understanding. But doing so may be 
difficult: the attention investment model [4] predicts that 
understanding the program would need to seem (to learners) to 
have lower perceived costs, higher perceived benefit and/or 
lower perceived risk than writing code from scratch.  

C. From Debugging-First to Programming: Level Creation 
After only about 5 hours of self-directed instruction with 

our debugging game, participant teams from our two camps 
created 101 Gidget levels, with every team applying 
programming concepts in this creation process. We examined 
these participant-created levels, focusing particularly on the 
programming concepts used in the levels and the level’s story, 
as storytelling elements in these environments are known to 
affect engagement  [14,15].  

Each team created between 2 and 10 levels (median: 5). 
The majority (66/101) of the levels created were Gidget 
puzzles (e.g., Figure 3) or mazes meant to challenge other 
players, but some participants also had partially-completed or 
proof-of-concept levels (21/101). Some participants repurposed 
the level designer for unintended functionality. For example, 
team mustache built three levels to hold solutions to their other 
levels, Epsilon made 2 story-related levels without any puzzle-
solving elements, and three teams from the Oregon camp used 
the level designer to draw pixel art. Overall, teams faced very 
few design barriers (2/258, Table 2), suggesting that they had 
many ideas for levels after playing through the game. 

Every team designed two or more complete levels that used 
at least one of the taught programming constructs (see Table 
3). The minimum knowledge to create a Gidget level is a 
Boolean expression to indicate a goal. Non-trivial Gidget levels 
(such as Figure 3) require knowledge of variables, Booleans, 
objects, and events. Thirteen teams designed levels that 
required programming concepts such as conditionals, loops, or 
the event-driven “when” statement and 6 used every concept in 
Gidget. All teams used at least one Boolean expression in their 
levels since it was mandatory to have a goal (written as an 
assertion). Additionally, many teams (76%) used events in 
their levels to so that an automatic event would occur as part of 
their stories. Some teams demonstrated their knowledge by 

writing their own incomplete puzzle code containing functions 
and loops for other players to debug. 

Most teams motivated their levels using stories in Gidget’s 
mission text: 14 of 17 teams motivated at least one level with 
story text. Four teams each created multiple levels with a 
continuous story thread. The Gidget character was popular as a 
domestic figure (having a house or partner) or as an altruistic 
hero (often rescuing animals in outer space). None of our 
participants developed stories focused on popular culture as 
observed in other camp studies [20]; this may have been due to 
participants treating Gidget as a character upon which they 
could build their own ideas. 

In the relatively short 5 hours allocated to level design, 
participants were able to try out many ideas and share results 
with their peers at every stage of their progress. Despite the 
fact that the level designer had the constraints of a 2D world 
and Gidget rules, our participants used it to not only program 
challenging puzzles, but to also tell imaginative stories. 

D. Overcoming Barriers: Practice Makes Perfect? 
One measure of whether participants in the camps learned 

from playing Gidget is to see if they encountered fewer barriers 
in puzzle play compared to level design. Using team-by-team 
barrier data (similar to those calculated in the right-most 
columns of Table 2), we calculated each team’s percent 
improvement per barrier type (Figure 4). We saw 
improvements in 15 out of 17 camp teams and an overall 
improvement of 45% from puzzle play to level design (see 
Table 2, lower-right corner). One explanation for the 

TABLE III.   TEAMS USING THE CONCEPT IN AT LEAST ONE LEVEL THEY 
CREATED ARE MARKED (✓).  6 TEAMS DEMONSTRATED USAGE OF ALL 6 
CONCEPTS AND 13 OF 17 TEAMS DEMONSTRATED 3 OR MORE CONCEPTS. 

Team Bool. Var. Cond. Loops Func. Event Total 
Purple Sparkly Turtles ✓ ✕ ✕ ✕ ✕ ✕ 1 
Derp-no-mancer ✓ ✓ ✕ ✕ ✕ ✕ 2 
Blondes ✓ ✓ ✕ ✕ ✕ ✕ 2 
GidgetDestroyer ✓ ✓ ✕ ✕ ✕ ✕ 2 
Epsilon ✓ ✓ ✕ ✕ ✕ ✓ 3 
Umbrella Mushroom ✓ ✓ ✕ ✕ ✕ ✓ 3 
~J-C~ ✓ ✓ ✕ ✕ ✕ ✓ 3 
greenyellow ✓ ✓ ✕ ✕ ✕ ✓ 3 
Pink Floating Pandas ✓ ✓ ✕ ✕ ✕ ✓ 3 
Cats ✓ ✓ ✕ ✓ ✕ ✓ 4 
HEAT ✓ ✓ ✕ ✓ ✓ ✓ 5 
Team Asian ✓ ✓ ✓ ✓ ✓ ✓ 6 
A-team ✓ ✓ ✓ ✓ ✓ ✓ 6 
Panda ✓ ✓ ✓ ✓ ✓ ✓ 6 
team mustache ✓ ✓ ✓ ✓ ✓ ✓ 6 
AbstractDolphin ✓ ✓ ✓ ✓ ✓ ✓ 6 
Dynamic Duo ✓ ✓ ✓ ✓ ✓ ✓ 6 
Percent of Teams 100% 94% 35% 47% 41% 76% - 

 



improvements is that teams used only basic programming 
concepts in their level designs, but Table 3 shows that only 4 
teams constructed levels requiring 2 or fewer programming 
constructs, so this explanation does not hold for the other 11 
teams. For these 11 teams, the best explanation for their 
improvement is that they did improve their programming skills 
while playing through the debugging puzzles. 

We believe that two teams, Team Asian and Team 
Mustache (see Figure 4), did not improve on the number of 
barriers because they devised and implemented ambitious 
levels. Both teams used all six programming constructs in their 
levels. Team Mustache encountered 500% more (12 barriers in 
level design vs. 2 in the puzzle portion) learning phase barriers 
during level design than in puzzle play, but created multiple 
levels (such as Figure 3) incorporating complex concepts such 
as a when statement with multiple Boolean expressions to 
verify players completed objectives sequentially. 

There was a noticeable difference in the amount of 
improvement in algorithm design barriers (19%) vs. learning 
phase barriers (51%). Table 2 shows the improvements for 
each barrier type (rightmost column). Two of the learning 
phase barriers improved by nearly 90%, compared to the best 
algorithm design barrier improvement of 41%. Furthermore, as 
Figure 4 shows, 15 teams improved on learning phase barriers, 
whereas only 10 teams improved on algorithm design barriers 
(Figure 4). Teams especially struggled with composition 
barriers, encountering them frequently but demonstrating only 
7% improvement—the least amount of improvement out of all 
barrier types (Table 2). The fact that the algorithm design 
barriers did not greatly improve with instruction and practice 
from the game suggests that algorithm design concepts may 
require more thorough explanations and help (P5-instruction, 
P6-help) than what is currently provided. 

In addition, despite the contradictory results in Section A.2 
regarding the number of barriers per person in both genders, 
both genders had similar improvements with 58% and 64% for 
females and males, respectively. This positive evidence of 
gender inclusiveness (P7-gender) is encouraging as to both 
females’ and males’ learning through this approach. 

VI. DISCUSSIONS AND IMPLICATIONS 
The results from our two studies suggest several strengths 

and weaknesses about the seven design principles. 

First, taken together, the seven principles in Gidget 
succeeded in teaching enough programming for participants to 
successfully write their own programs. Everyone finished the 
game in under 5 hours. Along the way, participants gradually 

learned to overcome many of their earlier learning phase 
barriers (51% improvement), although their ability to 
overcome their algorithm design barriers was less impressive 
(19% improvement). Still, the complexity and breadth of the 
levels the participants were able to create was impressive given 
their short learning time. For example, half the teams decided 
to use loops and functions in their custom levels and succeeded 
at doing so (Table 3), which are often major difficulties for 
novices in other programming languages.  

Principle P3-fallible has previously been shown [17] to be 
important in helping learners focus on their progress rather 
than on their failures/mistakes, and it seemed to promote 
engagement among our camp participants. However, we also 
identified problem-solving antipatterns that suggest that 
participants trusted the original code too much and did not 
scrutinizing it thoroughly. This suggests that even stronger 
messaging that the computer (and original code) is fallible is 
needed—while at the same time not further dissuading learners 
from reading and understanding the code.  

Nuances regarding P5-instruction and P6-help have been 
discussed throughout this paper. Our instantiation of these 
principles in the current Gidget allowed participants to 
complete the curriculum largely independently, and the 
learning they achieved transferred beyond the puzzle-based 
curriculum to the level design phase. However, much of the 
participants’ learning was limited to learning phase barriers: 
the algorithm design barrier improvement was much lower 
(Table 2). There were also recurring struggles with concepts 
such as string equality, functions, and objects (Table 2). These 
findings suggest that the type of static, contextual help in the 
current version of the game may be sufficient for teaching 
lower level concepts such as language syntax and semantics, 
but not for teaching algorithm design problem solving skills. 
Future work is necessary to identify appropriate ways of 
teaching these higher level skills in computing education 
learning technologies. 

Finally, with respect to P7-gender— e.g., avoiding 
competitive orientation, gender-neutral protagonist, etc.— both 
genders were able to learn from Gidget’s debugging game 
approach. Though females in the Oregon camp encountered 
more barriers on average than males in the same camp, they 
improved at a similar rate. Nearly all participants showed a 
strong affinity to the Gidget character and were enthusiastic in 
their efforts to learn to communicate with it during both puzzle 
play and puzzle design. Nonetheless, these results suggest a 
need to further investigate how the other principles, especially 
scaffolded help, should be improved such that it adheres more 
to gender inclusiveness. 

VII. CONCLUSION 
 The debugging games approach avoids the problem where 
learners need a large amount of programming knowledge 
before they can begin creating their own programs. We found 
that the seven design principles used to create Gidget worked 
together in many different capacities to successfully teach 
programming concepts in just 5 hours to learners who did not 
necessarily want to learn programming. Debugging games and 
more broadly, educational technologies such as Alice, Scratch, 
Codecademy, and other creative environments and tutorials 

 
Figure 4. Percent improvement by comparing barriers before, then during 
level design. 15 of 17 teams showed improvements, with greater improvement 
on learning phase barriers (dark) than on algorithm design barriers (light). 

-200% 

-150% 

-100% 

-50% 

0% 

50% 

100% 

te
am

 m
us

ta
ch

e 

Te
am

 A
si

an
 

P
an

da
 

H
E

AT
 

G
id

ge
tD

es
tro

ye
r 

C
at

s 

A
bs

tra
ct

D
ol

ph
in

 

A
-te

am
 

gr
ee

ny
el

lo
w

 

D
yn

am
ic

 D
uo

  

D
er

p-
no

-m
an

ce
r 

P
ur

pl
e 

S
pa

rk
ly

 
Tu

rtl
es

 
U

m
br

el
la

 
M

us
hr

oo
m

 
~J

-C
~ 

P
in

k 
Fl

oa
tin

g 
P

an
da

s 
E

ps
ilo

n 

B
lo

nd
es

 

To -800% 
To -500% 



may benefit from adopting the design principles explored in 
this paper. For example, adopting a debugging-first approach 
may empower users to learn without requiring an instructor, 
teach them important program understanding and debugging 
skills, and can lead to more success at creating their own 
programs. Revising the communication and instruction that 
environments provide to frame computers as fallible entities 
may also play an important role in sustaining learners’ 
motivation. 

Ultimately, if computer programming is ever to become 
mainstream, we must further explore the potential benefits of 
debugging games and other learner-centered approaches to 
teaching computing that can scale to millions of people. As our 
results indicate, the debugging game approach and its 
debugging-first, gender-inclusive, help-yourself puzzle game 
principles to computing education is not only a viable way 
forward, but one that learners can actually find captivating, 
engaging and fun: 

ACKNOWLEDGMENT 
We thank our participants. This work was supported in part 

by the National Science Foundation (NSF) under Grants CNS-
1240786, CNS-1240957, CNS-1339131, CCF-0952733, CCF-
1339131, IIS-1314356, IIS-1314384, and OISE-1210205. Any 
opinions, findings, conclusions or recommendations are those 
of the authors and do not necessarily reflect the views of NSF. 

REFERENCES 
[1] Aleven, V., Myers, E., Easterday, M., & Ogan, A. (2010). Toward a 

framework for the analysis and design of educational games. IEEE 
DIGITEL, 69-76. 

[2] Andersen, E., Liu, Y. E., Snider, R., Szeto, R., Cooper, S., & Popović, 
Z. (2011). On the harmfulness of secondary game objectives. ACM 
FDG, 30-37. 

[3] Beckwith, L., Burnett, M., Cook, C. (2002). Reasoning about many-to-
many requirement relationships in spreadsheets. IEEE VL/HCC, 149-
157. 

[4] Blackwell, A.F. (2002). First steps in programming: A rationale for 
attention investment models. IEEE HCC, 2-10. 

[5] Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., & Klemmer, S.R. 
(2009). Two studies of opportunistic programming: interleaving web 
foraging, learning, and writing code. ACM CHI, 1589-1598. 

[6] Burnett, M., Beckwith, L., Wiedenbeck, S., Fleming, S.D., Cao, J., Park, 
T.H., Grigoreanu, V., Rector, K. (2011). Gender pluralism in problem-
solving software, Interacting with Computers, 23, 450-460.   

[7] Cao, J., Kwan, I., White, R., Fleming, S., Burnett, M., & Scaffidi, C. 
(2012). From barriers to learning in the Idea Garden: An empirical 
study. IEEE VL/HCC, 59-66.  

[8] Cao, J., Kwan, I., Bahmani, F., Burnett, M., Fleming, S.D., Jordahl, J., 
Horvath, A., & Yang, S. (2013). End-user programmers in trouble: Can 
the Idea Garden help them to help themselves? IEEE VL/HCC. 

[9] Charters, P., Lee, M.J., Ko, A.J., & Loksa, D. (2013). Challenging 
Stereotypes and Changing Attitudes: The effect of a brief programming 
encounter on adults' attitudes toward programming. ACM SIGCSE. 
 

[10] Ellis, A. (2005). Research On Educational Innovations. Eye On 
Education, Inc., Larchmont, NY 

[11] ESA (2011). Essential facts about the computer and video game 
industry. Entertainment Software Association. Web. 21 Feb. 2012. 
<http://www.theesa.com/facts/pdfs/ESA_EF_2011.pdf> 

[12] Gee, J.P. (2003). What video games have to teach us about learning and 
literacy. Computers in Entertainment, 1(1), 20. 

[13] Goode, J., Estrella, R., & Margolis, J. (2006). Lost in translation: 
Gender and high school computer science, In Women and Information 
Technology: Research on Underrepresentation, MIT Press, 89-114. 

[14] Kelleher, C., Pausch, R., & Kiesler, S. (2007). Storytelling Alice 
motivates middle school girls to learn computer programming. ACM 
CHI, 1455-1464. 

[15] Kerr, J., Kelleher, C., Ellis, R. & Chou, M (2013). Setting the scene: 
scaffolding stories to benefit middle school students learning to 
program. IEEE VL/HCC, 95-98.  

[16] Ko, A.J., Myers, B.A., & Aung, H. (2004). Six learning barriers in end-
user programming systems. IEEE VL/HCC, 199-206. 

[17] Lee, M.J. & Ko, A.J. (2011). Personifying programming tool feedback 
improves novice programmers' learning. ACM ICER, 109-116. 

[18] Lee, M.J., Ko, A.J. (2012). Investigating the role of purposeful goals on 
novices' engagement in a programming game. IEEE VL/HCC, 163-166. 

[19] Lee, M.J., Ko, A.J., & Kwan, I. (2013). In-game assessments increase 
novice programmers' engagement and level completion speed. ACM 
ICER, 153-160. 

[20] Maloney, J.H., Peppler, K., Kafai, Y., Resnick, M., & Rusk, N. (2008). 
Programming by choice: Urban youth learning programming with 
scratch. ACM SIGCSE Bulletin, 40(1), 367-371. 

[21] Margolis, J. & Fisher, A. (2003). Unlocking the Clubhouse: Women in 
Computing, MIT Press. 

[22] Meyers-Levy, J. (1989). Gender differences in information processing: 
A selectivity interpretation, In Cognitive and Affective Responses to 
Advertising, Lexington Books, 219-260. 

[23] Misa, T. (2010). Gender codes: Defining the problem, in Gender Codes: 
Why Women are Leaving Computing, Wiley, 3-24. 

[24] Monroy-Hernández, A., & Resnick, M. (2008). Empowering kids to 
create and share programmable media. Interactions, 15(2), 50-53. 

[25] NCWIT (2010). NCWIT Scorecard: A report on the status of women in 
information technology. Nat’l Ctr. for Women & IT. Web. 30 Mar. 2013. 
<http://www.ncwit.org/pdf/Scorecard2010.pdf> 

[26] Pane, J., & Myers, B. (2006). More natural programming languages and 
environments, In End User Development, Springer, 31-50. 

[27] Polya, G. (1971). How to Solve It: A New Aspect of Mathematical 
Method, Princeton Univ. Press. 

[28] Ram, A., & Leake, D.B. (1995). Goal-Driven Learning. MIT Press, 
Boston, MA. 

[29] Reinecke, L., Trepte, S., & Behr, K.M. (2008). Why Girls Play. Results 
of a Qualitative Interview Study with Female Video Game Players. 
Universitäts- und Landesbibliothek. 

[30] Rising, L. (1999). Patterns: A way to reuse expertise. IEEE 
Communications, 37(4), 34-36. 

[31] Scaffidi, C., & Chambers, C. (2012). Skill progression demonstrated by 
users in the Scratch animation environment. Int’l J. HCI, 28(6) 383-398. 

[32] Schön, D.A. (1983). The Reflective Practitioner: How Professionals 
Think in Action. Basic Books, NY. 

[33] Shute, V.J. (1993). A macroadaptive approach to tutoring. Journal of AI 
in Education, 4(1), 61-93. 

[34] Subrahmaniyan, N., Kissinger, C., Rector, K., Inman, D., Kaplan, J., 
Beckwith, L., & Burnett, M. (2007). Explaining debugging strategies to 
end-user programmers. IEEE VL/HCC, 127-136. 

[35] UK DFE (2013). National Curriculum in England: Computing 
Programmes of Study. (Dept. Education No. DFE-00171-2013). UK. 

[36] Werner, L.L., Hanks, B., & McDowell, C. (2004). Pair-programming 
helps female computer science students. ACM JERIC, 4(1). 

[37] Yee, N. (2006). Motivations for play in online games. Cyber Psychology 
& Behavior, 9(6), 772-775.

 


