
 

GitHub Developers Use Rockstars to 
Overcome Overflow of News

 
 

Abstract 
Keeping track of a constantly updating stream of news 
items on social networking enabled software 
development sites may be difficult. We analyzed the 
actions of 544 GitHub.com developers working across 
5,657 projects to examine how the network of 
developers and projects influence where developers 
choose to contribute. Our analyses revealed the 
existence of a group of extremely well connected 
developers, or rockstars. We found that these 
rockstars’: 1) actions have a greater influence on their 
followers compared to regular developers, 2) type of 
action affect their followers differently, 3) influence on 
followers may depend on a project’s age, 4) increased 
activity on a project increases activity by followers, and 
5) followers use as guides to projects to work on. We 
discuss the implications of these findings to the design 
of software development environments. 

Author Keywords 
Open source; social computing; social coding; GitHub. 

ACM Classification Keywords 
H.5.3. [Group and Organization Interfaces]: Computer-
Supported Cooperative Work. 

General Terms 
Human factors; design. 

Copyright is held by the author/owner(s). 

CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris, France. 
ACM 978-1-4503-1952-2/13/04. 

Michael J. Lee 
University of Washington 
Mary Gates Hall, Box 352840 
Seattle, WA 98195-2840, USA 
mjslee@uw.edu 
 
Bruce Ferwerda 
Yonsei University 
134 Shinchon-dong 
Seodaemun-gu, Seoul, S.Korea 
bruce@yonsei.ac.kr 
 
Junghong Choi 
Yonsei University 
134 Shinchon-dong 
Seodaemun-gu, Seoul, S.Korea 
junghong@yonsei.ac.kr 
 
 

Jungpil Hahn 
National University of Singapore 
21 Lower Kent Ridge Road, 
Singapore, 119077 
jungpil@nus.edu.sg 
 
Jae Yun Moon 
Korea University 
145 Anam-ro, Seongbuk-gu, 
Seoul, South Korea 
jymoon@korea.ac.kr 
 
Jinwoo Kim 
Yonsei University 
134 Shinchon-dong 
Seodaemun-gu, Seoul, S.Korea 
jinwoo@yonsei.ac.kr 
 
 
 
 

Work-in-Progress: CSCW CHI 2013: Changing Perspectives, Paris, France

133



 

Introduction 
Recently, many websites have started implementing 
social network service (SNS) features, allowing their 
users to easily share information and stay aware of 
connected people’s activities. Adding SNS features to 
websites have been shown to increase activity and 
collaboration among users [14]. One domain where 
SNS features are starting to appear is in software 
development, which raises important questions about 
how these features could affect developers’ work, their 
decisions to contribute to others’ projects, and how 
their social network influences these actions. 

The importance of social factors in traditional software 
development has been stressed in many prior works. 
For example, software development has been 
conceptualized as a highly collaborative activity where 
developers work on various, fragmented pieces of code 
to make larger software applications [1]. DeMarco 
found that developers spend up to 70% of their time 
working with others [5] and similarly, Perry et al. 
reported that over half of developers’ time was spent 
interacting with coworkers [12] to increase awareness 
[10] and create code [9]. 

Current online repositories (e.g., Sourceforge.net and 
Google Code) enable individual developers and teams 
to collaborate on projects but lack features to make 
social ties and keep up with others’ updates. One site 
that has successfully integrated SNS features is GitHub 
(www.github.com), which allows developers to “follow” 
other developers, or to “watch” others’ projects. Once 
these ties are established, any activity by these 
connections will appear in the developers’ news feeds. 

Using in-depth interviews, Dabbish et al. [4] found that 
GitHub developers make rich inferences about others 
and others’ projects based on information they receive 
from these SNS features. However, although the use of 
SNS features may increase social awareness and 
transparency, as developers add more social 
connections, they also increase the number of activity 
notifications in their news feeds. Once the quantity of 
these notifications become excessive, it may cause 
stress [13], dilute the usefulness of the information [6], 
and be a source of distraction [11] from working on 
projects. These prior findings raise additional questions 
about how increased social awareness and 
transparency of others’ work affect developers and 
their participation in others’ software projects [4,13]. 

To investigate the effects of social awareness and 
transparency on developers’ contributions to others’ 
projects, an exploratory analysis was conducted 
(explained further in our methods section). We 
compiled a dataset of 544 randomly selected 
developers over three months from GitHub. Basic 
descriptive statistics indicated that GitHub developers 
using social features received a large number of activity 
notifications in their news feeds (more than half of the 
developers in our sample received at least 254 news 
feed items per day on average). Despite the potential 
for information overload, these developers appeared to 
be productive members of the site, not only working on 
their own projects but also participating in others’ 
projects. In fact, our data showed that those 
developers who had more SNS connections – and 
therefore received more frequent updates to their news 
feed – were actually more likely to contribute to socially 
connected projects than those with fewer SNS 
connections. This suggests that developers were able to 

Work-in-Progress: CSCW CHI 2013: Changing Perspectives, Paris, France

134



 

somehow cope with the exorbitant influx of activity 
information from their social connections. 

A possible strategy these developers used to cope with 
the large amount of activity information was to follow 
and learn from the actions of other developers. This 
tactic is related to social learning theory, which argues 
that people learn from observing role models in day-to-
day life and that they will begin to act like the people 
they observe [2,3], and social navigation [7], which 
states that users navigate through information space 
guided by the activities of others. Dabbish et al. [4] 
labels these role models as “rockstars” in their 
qualitative study of GitHub developers. Rockstars are 
developers with thousands of followers and deemed to 
have some special skill or knowledge. Other developers 
can learn from these rockstars by tracking how they 
are coding, where they are giving their attention, and 
how they are solving problems [4]. 

Based on these ideas, we decided to focus on the 
following research question: how do extremely well 
connected individuals influence others’ activities on an 
SNS-enabled software development site? From this 
question, we established five propositions to investigate 
further: 1) do rockstars’ really have a larger influence 
on their followers compared to regular developers? 2) 
do certain actions by rockstars affect their followers 
differently? 3) does a project’s age affect a rockstars’ 
influence on followers? 4) does the amount of activity 
by a rockstar on a project influence followers? And 5) 
do followers use rockstars as guides to projects? 

Method 
Detailed activity and social connectivity data was 
collected over a three-month period for a random 

sample of 544 developers. A total of 38,681 actions 
across 5,657 projects were observed. Our sample 
controlled for those using the site as a code dump, and 
included only developers that performed at least one 
action, and was following or watching at least one other 
person or project (owned by someone else). A custom 
script using GitHub’s API logged all users’ actions every 
three minutes into a database. Actions included: who 
(developer), what (action), where (project), and when 
(timestamp). The actions included commit comment, 
create, delete, download, follow, fork, gist, gollum, 
issue comment, issues, public, pull request review 
comment, pull request, push, and watch events (which 
are further explained in [8]). The following metadata 
was also collected: when a project first began, who 
developers were connected to (who they were 
following, and who were following them), and what 
projects they were connected to (i.e., watching).  

One particularly interesting group of developers 
collaborating often with others were “rockstars” [4]. 
Ordering developers by their number of followers and 
number of actions performed revealed four rockstars 
(followers: x ̅=2035.5, SD=1850, actions:  x ̅=100.5, 
SD=60.8), that were significantly different from other 
developers (followers: x ̅=40.4, SD=69.7, actions: 
x ̅=32.1, SD=87.8). Combined, the four rockstars were 
connected to 183 projects (91 owned by the rockstars, 
and 92 owned by others), and 2,139 unique followers. 

Findings 
Using a data visualization tool for initial insights and 
statistical analyses for subsequent empirical 
exploration, we observed a number of empirical 
regularities, which we summarize as propositions. 

Work-in-Progress: CSCW CHI 2013: Changing Perspectives, Paris, France

135



 

Rockstars Do Strongly Influence their Followers 
Results of a linear regression indicated that more of the 
rockstars’ followers performed subsequent actions 
(x ̅=83.2, SD=27.9) on the same projects than the 
followers of regular developers (x ̅=12.7, SD=8.5), 
meaning that rockstars have a bigger influence on their 
followers. Being a rockstar was found to be a significant 
predictor (β=96.8, p<.001) accounting for 44.8% of 
the variance (R2=.448, F(1, 394)=319.92, p<.001) 
explaining the number of followers performing a 
subsequent action. 

Rockstars’ Action Type Affects Project Attractiveness 
Next, we wanted to investigate if certain types of 
actions by rockstars affected how many of their 
followers performed subsequent actions on the same 
projects. To test this, we focused on projects that 
rockstars could contribute to, without having any 
strong ties. We identified 92 projects that were not 
owned or associated with rockstars.  

For the analysis, we divided the actions performed on 
these projects into two groups: 1) watch and fork, and 
2) open issue, pull request, and comment. This 
distinction was made because the actions of the first 
group trigger a news feed event, but do not necessarily 
indicate a contribution to the project. In contrast, the 
actions in the second group trigger a news feed event 
and constitute a contribution or addition to the project. 
Additionally, projects where rockstars were the last 
contributor to a project were excluded (n=11) since 
there was no subsequent follower activity to analyze. 

The results of the linear regression indicated that the 
action type of rockstars reliably explained 11.6% of the 
variance (R2=.116, F(1,79)=10.32, p<.01) predicting 

the subsequent actions of their followers (β=.04, 
p<.01). So, the type of action a rockstar performs will 
attract a different amount of participation from their 
followers on the same project. When a rockstar 
performs a watch or fork action, followers are 
performing fewer actions in the same project compared 
to when they are performing an open issue, pull 
request, or comment action. 

Project Age Affects Project Attractiveness 
Next, we wanted to observe whether the age of a 
project affected the influence of a rockstar on their 
followers. For this analysis we used the 92 projects that 
rockstars did not own and were not associated to. 
These projects’ absolute age ranged from 4 to 40 
months (x ̅=12.7, SD=8.5). 

Results of a linear regression indicated that the age of 
projects explained 10.8% of the variance (R2=.108, 
F(1, 90)=10.85, p<.01) of the subsequent actions by 
rockstars’ followers on the same projects (β=-.59, 
p<.01). Furthermore, this was a negative relationship, 
meaning that rockstars’ actions on older projects were 
correlated with fewer subsequent actions by followers.  

Rockstars’ Intensity Affects Project Attractiveness 
We wanted to test whether high activity on a project by 
rockstars affected their followers’ contributions to the 
same project. To investigate this, we examined the 
actions of rockstars’ on the projects they owned (n=91) 
and the number of followers doing a subsequent action 
on the same projects. We chose to focus on projects 
owned by rockstars since we could control for 
contributions by others (e.g., actions such as pull 
requests require the intervention of an owner, which 
could potential disrupt or halt further actions). 

Work-in-Progress: CSCW CHI 2013: Changing Perspectives, Paris, France

136



 

Results of a linear regression indicated that when 
rockstars perform more actions on their owned 
projects, it attracts more followers to perform actions 
on the same project. The number of actions rockstars 
made in their projects explained 70.8% of the variance 
(R2=.708, F(1, 89)=215.76, p<.001) of the subsequent 
actions made by their followers on the same projects 
(β=.44, p<.001). This indicates that followers are 
attracted to perform actions on projects as rockstars 
increase their activity on those projects. 

Rockstars’ Actions Guide Other Developers to Projects 
Finally, we wanted to see whether followers were using 
the rockstars as a guide for finding projects to work on. 
We focused on projects rockstars did not own since we 
were interested to see if followers were guided to 
projects where rockstars did not have strong ties. 

Using a data visualization tool as a guide, two types of 
behaviors emerged: 1) after a rockstar performs any 
action on a project, a follower also contributes to the 
project, but by doing an unrelated action (e.g., a 
rockstar performs a comment action, and the follower 
performs a subsequent pull request action), and 2) 
after a rockstar opens a new issue or comments on an 
existing issue reported about a project, a follower also 
comments on the same issue thread.  

Similar to social learning theory and social navigation, 
where people follow the actions of others [2,7], a 
follower’s action was preceded by a rockstar’s action in 
the same project in both of the cases above. To 
investigate the size of this effect, we analyzed the 92 
projects that rockstars contributed to, but did not own. 
A total of 307 followers performed subsequent actions 
following a rockstar’s action on the same project. 

However, only two cases among these were found 
where followers contributed to the same issue thread. 
The remaining 305 followers performed actions on the 
same project, but on different issues. 

Discussion 
Our findings show that rockstars generally have a 
larger influence on their followers than ordinary 
developers have on their followers. Based on our data, 
developers using SNS-features are inundated with 
updates in their news feeds, potentially making it 
difficult to filter out interesting or relevant projects. Our 
findings show that developers using SNS features may 
utilize strategies involving rockstars to guide, filter out, 
and identify projects to work on. 

One of our results found that certain actions by 
rockstars affect their followers differently. This may be 
explained by considering that a watch or fork action 
might be interpreted by a follower as the initiation of 
interest in a project, whereas other contributions might 
indicate more serious and substantive interest in the 
project. Another finding was that a project’s age affects 
rockstars’ influence on followers. This might be 
attributed to the maturity of a project, where older, 
stable projects may have fewer changes to implement.  

Given our results, there are several HCI-related 
implications to consider about the use of SNS features 
on sites like GitHub to improve the user experience and 
help developers find projects to work on. Currently, 
Githib’s news feed displays a mixture of information 
even though some news items may be more relevant or 
useful to the developer. Since we found that the 
activity intensity of rockstars on their own projects had 
a significant effect on attracting others’ contributions, it 

Work-in-Progress: CSCW CHI 2013: Changing Perspectives, Paris, France

137



 

may be advantageous to showcase these or create a 
recommendation system so more developers can be 
exposed to these projects. Exploring new ways to 
recommend interesting projects may also lead to a 
stronger sense of community and more collaboration. 

In addition, GitHub currently provides a tool that allows 
users to search for text within projects, users, and 
code. However, it is unclear how useful this search tool 
will be for finding relevant or interesting projects to 
work on. Given our results showing that developers’ 
actions are highly correlated with those of rockstars’ 
actions, providing search tools including SNS-related 
functions (e.g., ranking results by contributors’ social 
connections, sorting by the total number of actions on a 
project, or filtering by types of actions) may help 
developers identify interesting projects. 

Finally, our results focused on a subset of developers 
who used social features, and collaborated with other 
developers. We hope this work can be extended by 
examining other types of developers, including those 
who do not use SNS features, to create new and 
improved collaborative online coding environments. 

References 
[1] Ahmadi, N., Jazayeri, M., Lelli, F., & Nesic, S. A 
Survey on Social Software Engineering. Int’l Social 
Software Engineering and Applications (2008), 1–12. 

[2] Bandura, A. Social Learning Theory. New York: 
General Learning Press (1977). 

[3] Burke, M., Marlow, C., & Lento, T. Feed Me: 
Motivating Newcomer Contribution in Social Network 
Sites. ACM CHI (2009), 945-954. 

[4] Dabbish, L., Stuart, C., Tsay, J., & Herbsleb, J. 
Social coding in GitHub: Transparency and collaboration 
in an open software repository. ACM CSCW (2012), 
1277-1286.  

[5] DeMarco, T. & Lister, T. Peopleware: Productive 
projects and teams. New York: Dorset House Publishing 
Co., Inc., 1987. 

[6] De Souza, C.R.B., Redmiles, D., & Dourish, P. 
‘Breaking the Code’, Moving between Private and 
PublicWork in Collaborative Software Development. 
ACM SIGGROUP (2003), 105-114. 

[7] Dourish, P. & Chalmers, M. Running Out of Space: 
Models of Information Navigation. HCI (1994). 

[8] GitHub. 
https://help.github.com/categories/63/articles. 
Retrieved August 20, 2012. 

[9] Ko, A.J., DeLine, R., & Venolia, G. Information 
Needs in Collocated Software Development Teams. 
ICSE (2007), 344-353. 

[10] Lee, M.J., Ko, A.J. Representations of user 
feedback in an agile, collocated software team. IEEE 
CHASE (2012), 76-82. 

[11] McFarlane, D. & Latorella, K. The scope and 
importance of human interruption in human-computer 
interaction design. HCI (2002), 1-61. 

[12] Perry, D.E., Staudenmayer, N.A., & Votta, L.G. 
People, Organizations and Process Improvement. IEEE 
Software (1994), 36-45. 

[13] Stuart, H.C., Dabbish, L., Kiesler, S., Kinnaird, P., 
& Kang, R. Social transparency in networked 
information exchange: a theoretical framework. ACM 
CSCW (2012), 451–460. 

[14] Zhao, D. & Rosson, M.B. How and why people 
Twitter: The role that micro-blogging plays in informal 
communication at work. ACM GROUP (2009), 243-252. 

Work-in-Progress: CSCW CHI 2013: Changing Perspectives, Paris, France

138




