
In-Game Assessments Increase Novice Programmers’
Engagement and Level Completion Speed

 

 

ABSTRACT
Assessments have been shown to have positive effects on learning
in compulsory educational settings. However, much less is known
about their effects in discretionary learning settings, especially in
computing education and educational games. We hypothesized
that adding assessments to an educational computing game would
provide extra opportunities for players to practice and correct
misconceptions, thereby affecting their performance on
subsequent levels and their motivation to continue playing. To test
this, we designed a game called Gidget, in which players help a
robot find and fix defects in programs that follow a mastery
learning paradigm. Across two studies, we manipulated the
inclusion of multiple choice and self-explanation assessment
levels in the game, measuring their impact on engagement and
level completion speed. In our first study, we found that including
assessments caused learners to voluntarily play longer and
complete more levels, suggesting increased engagement; in our
second study, we found that including assessments caused learners
to complete levels faster, suggesting increased understanding.
These findings suggest that including assessments in a
discretionary computing education game may be a key design
strategy for improving informal learning of computing concepts.

Categories and Subject Descriptors
K.3.2 Computer Science Education: Introductory Programming,
D.2.5 Testing and Debugging.

Keywords
Programming, assessment, engagement, speed, debugging, serious
game, educational game.

1. INTRODUCTION
Recent press about code.org and other efforts to increase computing
literacy have begun to attract millions of people to learn computer
programming. Many of these individuals are turning to discretionary
online resources such as Codecademy, Kahn Academy, Coursera,
and CodeHS, and research environments such as Alice and Scratch,
to learn. Although research on these learning materials is still sparse,
learners report that they enjoy these informal resources more than
traditional classes because they allow for flexibility in how they
learn, they give learners a better sense of retaining the material [5],
and they are more motivating, engaging, and interesting than
traditional classroom courses [10]. Some of these attitudes can be

attributed to these resources’ use of game mechanics such as
scaffolded materials, structured mastery learning, concrete goals,
and extrinsic incentives such as badges [39].
Unfortunately, many of these resources struggle to keep learners
engaged [12] and few of them involve explicit evaluations of
learning, making it unclear how much learners actually learn or
retain. Therefore, as these resources increase in popularity, a
significant design challenge will be improving engagement, while
also demonstrably improving understanding.
One way to potentially improve both understanding and engagement
is to use assessments [29]. Assessments, which directly tests
learners’ knowledge by asking them to explicitly answer questions
about the material, are widely used in compulsory settings not only
to measure learners’ progress and what they know [6], but also to
improve students’ learning itself [4]. Assessments improve learning
and understanding partly by helping students practice course
material and by clearing up misconceptions [8,20].
Unfortunately, there is a lack of research about how including
assessments might affect learners’ use of discretionary learning
resources [5]. Moreover, there is reason to believe that assessments
could actually harm engagement, even if they improve learning. For
example, assessments can lead to test-anxiety, negatively affecting
engagement [34], especially if they get the wrong answer or
feedback is lacking [6]. Including assessments in educational games
or resources that use game mechanics may be even more harmful, as
they may interfere with a player’s enjoyment of the game, creating a
“testing” mode that is poorly integrated with the rest of the game,
leading the learner to disengage or even quit the activity.
To begin exploring the role of assessments in discretionary
computing education games, we investigated the effect of integrated
learning assessments on both engagement and speed across two
online controlled experiments where learners played Gidget [22,23],
a debugging game in which learners play through a series of levels,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICER’13, August 12–14, 2013, San Diego, California, USA.
Copyright © 2013 ACM 978-1-4503-2243-0/13/08…$15.00.
http://dx.doi.org/10.1145/2493394.2493410

Figure 1. Does providing in-game assessment questions help
discretionary learners playing an educational programming
game increase engagement and level completion speed? This

figure shows a multiple choice assessment in such a game.

Michael J. Lee
1, Amy J. Ko

1, and Irwin Kwan
2

1 University of Washington  
Information School

{mjslee, ajko}@uw.edu

2 Oregon State University
School of EECS

kwan@eecs.oregonstate.edu

mailto:permissions@acm.org
http://dx.doi.org/10.1145/2493394.2493410

finding and fixing defects in a robot’s programs. In our two
experiments, we manipulated the inclusion of explicit assessments
like the one shown in Figure 1, which asks learners to indicate the
final position of the robot by mentally simulating the given
program’s execution. In the rest of this paper, we discuss prior work
on educational games and assessments in different learning
environments, detail our game and study design, and discuss our
results and their implications on computing education.

2. RELATED WORK
Educational games have become an increasingly popular way to
teach STEM (science, technology, engineering, and mathematics)
subjects [16,30]. Researchers have taken advantage of this interest
to improve educational games to be more fun, informative, and
educational. Some research focuses on creating games that directly
try to teach a skill or subject such as computer programming
[13,22,23], others focus on adding game-like features to existing
teaching systems such as intelligent tutors [18,26], and some focus
more generally on creating frameworks for effective evaluation
[2,34,35]. Several works have also attempted to identify the specific
parts of games that motivate [24] and attract people to pursue
computing education [14,15,24], but fewer have examined how to
effectively measure the outcomes of educational games [35].
Assessments have long been used in compulsory settings to keep
students’ engaged with the course material, encourage reviewing or
reflecting on past material, and measure learning [4,33]. They have
been shown to be useful for students to orient, organize, and
integrate study materials, leading to measurable performance gains
[7]. Moreover, receiving feedback from assessments can affect
learners’ self-efficacy, which plays an important role in future
performance [38], and also provides an opportunity for learners to
reflect on their work and correct any misconceptions they have
about the material [8,20]. Of particular interest is the testing effect,
which states that minor, incremental testing leads to better retention
and higher scores when compared to repeatedly studying the same
material [7,17,25]. This demonstrates that assessments not only
have utility for educators to track their students’ progress, but are
also important tools to promote student learning and retention.
Much less is known about assessments in discretionary settings,
particularly for educational games, and how they might interact with
other gameplay elements to affect players’ engagement with the
educational material. This is particularly true of learning
technologies for computing education. Although researchers agree
that adding assessments to games is worthwhile since they build on
the same principles of learning (to be successful in the game, or to
learn some additional material) [27], the lack of use in actual
practice makes it unclear how the inclusion of assessments in games
will influence players. This is a challenging task, since deviating too
far from the gameplay can be distracting, boring, or disengaging,
which is particularly important in the context of a discretionary
setting where a learner can choose to leave at any time [34].
Csikszentmihalyi describes this as maintaining flow, where the
learner is deeply immersed in the game experience [11]. Shute et.
al’s work attempts to address these issues through stealth
assessments, which are intended to reduce text anxiety, and blur the
distinction between game content, assessment, and learning [34,35].
The goal of this method is to reduce the likelihood of explicit
assessments from disrupting flow and decreasing engagement while
playing a game. However, research in compulsory settings, where
students know they are being tested, have found that explicit
assessments and feedback help students retain information better
and keep them motivated with the educational material [7,17,25].
Therefore, it is currently unclear how making assessments an
explicit part of a game will affect learners’ perceptions of the game,
their motivation to play, their recall ability, and their performance.

3. METHOD
The aim of our study was to determine how integrated, explicit
assessments in an educational computing game affects engagement
and task completion speed in self-directed learners, and to identify
the extent of these effects. To do this, we designed Gidget (Fig. 2),
a game that teaches programming by asking the player to fix a
damaged robot’s faulty code to help it accomplish its missions
(detailed further in Section 3.1). Each game level teaches a
particular programming concept, challenging the player to find and
fix the defects in each level’s program so that it passes the provided
goals, which are executable test cases. Following the mastery
learning paradigm [28], each of the game’s levels is designed to be
passable only if the learner has grasped a particular concept in the
game’s programming language.
We conducted two separate controlled experiments, with the first
measuring engagement and the second measuring task completion
speed (see Table 1). Each of our experiments had two conditions:
the control condition’s curriculum consisted of a series of levels
without assessments, whereas the experimental condition (which
we will call the assessment condition), was identical, but also
included two assessment levels at the end of each set of levels.
In our engagement study, learners could quit any time, as with any
discretionary learning material. We hypothesized that the learners
in the assessment condition would play the game for longer and
complete more levels because the assessments would offer
additional opportunities to practice each units’ concepts, leading to
better understanding of the material and reducing the likelihood of
encountering difficulties and discouragement in subsequent levels.
We measured both the total number of levels completed and the
total time playing the game.
Our speed study followed the same structure as the engagement
study but was designed to enable a direct comparison of how
quickly participants completed Gidget game levels. To enable this
comparison, we operationalized speed as the total time required to
complete the first three sets of levels in the game. We hypothesized
that even though players in the assessment condition would have to
spend more time on the assessment levels, the extra practice and
feedback they received through the assessments would result in
them being more successful in subsequent levels, completing
individual levels faster than those in the control condition.
Both the engagement and speed studies were between-subjects
designs with 200 and 30 participants respectively, split evenly
across conditions. Participants were recruited on Amazon.com’s
Mechanical Turk. The speed study was launched after the
engagement study, without overlap, to prevent people from playing
the game simultaneously; we also prevented players more than
once. Though we attempted to recruit the same number of
participants for both treatments, the speed study attracted fewer
participants because it required a larger up-front time commitment.

Table 1. Experimental design of our two studies.
Study 1: “Engagement” Study 2: “Speed”

Independent
variables

Gidget game with or without assessment levelsGidget game with or without assessment levels

Dependent
variable(s)

#1: the number of regular
levels completed
#2: total time playing the
game

#1: the time required to
complete a set of levels (3
units of the game)

Participants 200 total; 100 per condition 30 total; 15 per condition

Payment
criteria

Incentive of $0.10 per level
completed, up to a total of
25 (control) or 37 levels
(assessment); can quit
playing at any point.

Incentive of $7.00 after
playing 3 units worth of
levels; can quit any time
after 3 units, but earn
additional $0.10 per level
completed.

3.1 Gidget, The Programming Game
Gidget is an HTML5 web application that is playable in a browser.
The game is motivated by a story: there has been a chemical spill
from a factory and Gidget, a small robot capable of identifying and
solving problems with programs, has been deployed to clean up the
area. Unfortunately, Gidget was damaged in transit, and is only able
to provide code (Fig. 2-1) that partially, but not completely solves
each level’s goals (Fig. 2-3). It is the player’s job to help the robot
through missions by diagnosing and fixing the problems in each
level’s code (Fig. 2-1), then executing the code (Fig. 2-2), so the
robot can fulfill the executable mission goals (Fig. 2-3).
The game uses an imperative, Python-like programming language
designed specifically for the game. The language supports
dynamically typed-variables, Boolean operators and expressions,
conditionals, mathematical operators, objects, functions, and
domain-specific keywords for the game characters to interact with
their world. These interactions primarily include finding things in
the world (Fig. 2-4), going to them, checking their properties, and
carrying them to other places on the grid. In some cases, objects
have their own abilities, which Gidget can call as functions. After
each execution step, the effect of these commands are shown in the
‘program state’ panel (Fig. 2-5) and explained by Gidget (Fig. 2-6)
to reinforce the semantics of each command. Each step costs Gidget
1 unit of ‘energy’ (displayed at the top of Fig. 2-5), which forces
players to consider how to write efficient programs that can be
solved using the allocated amount of energy.
To aid the players with debugging, the game offers four execution
controls: one step, one line, to end, and stop (Fig. 2-2). The one step
button evaluates one compiled instruction, displaying text
explaining the execution of the step. The one line button evaluates
all steps on one line of the code, just as a breakpoint debugger does,
jumping to the final output of that line. The to end button evaluates
the entire program and the goals, animating each step in quick
succession. The stop button allows the player to halt the program
and edit code during any part of the execution. When the learner
uses one step or one line, Gidget provides a detailed explanation of
the execution of each statement in the program, highlighting
changes in the runtime environment. This serves as the game’s

primary instructional content, explicitly teaching the language
syntax and semantics.
To help learners start playing Gidget, the game presents a ten-slide
tutorial to every player upon game start. The game also features an
in-game reference guide, providing explanations and examples of
each command in the language, along with information about
programming concepts such as variables, functions, the stack, and
loops. The reference guide was available as a standalone help guide
or as tooltips that appeared when hovering over tokens in the code
editor. Finally, the game’s code editor provides keystroke-level
feedback about syntax and semantics errors, as in Fig. 2-6,
highlighting erroneous code in red and explaining the problem in
Gidget’s speech bubble.

3.2 Curriculum
There were a total of 7 units in the game, with each unit containing
a set of levels focusing on a related set of programming keywords or
concepts (see Fig. 3). Unit 1 focused on moving Gidget and other
objects around in the world by using simple keywords such as up,
down, left, right, grab, and drop. Unit 2 furthered the ideas from the
previous section, introducing the goto keyword, and working with
lists. Unit 3 introduced variables, types, and values. Unit 4 presented
the declaration and use of functions and objects. Unit 5 showed how
to use Boolean values, expressions, and logic. Unit 6 focused on
loops. Finally, Unit 7 did not teach any new concepts, instead
challenging the player to write solutions from scratch to satisfy the
level’s goals. The last levels in each unit were designed to be a
cumulative overview, requiring the learner to recall and use the
keywords and concepts covered in that unit.
The order of units and the sequence of levels was designed
iteratively based on curricula found in CS1 textbooks, pilot testing
with novice programmers, and the authors’ cumulative experience
teaching CS1 courses. A list of overall learning objectives drove the
creation, consolidation, and refinement of the levels [2]. Each level
was designed to address one or two specific learning objectives
related to the language syntax or semantics. The sequence of levels
was also influenced by the game story, and by the language itself
(since certain keywords and concepts are easier to understand once

Figure 2. Gidget is a game in which players help a damaged robot by fixing its broken programs. The player’s progress is shown
below the level title, with learning units divided by vertical bars. Regular levels are circles, and assessment levels are squares.

other concepts have been learned). Finally, levels were designed to
progress the story and have some purpose embedded in the goals
since we found previously that purposeful goals influence learners’
engagement [23]. This sequence was validated by testing with
participants in-person and online by observing that the order of
levels was not a barrier in their progress through the game.

3.3 Assessment Levels
The primary manipulation in our two studies was the inclusion or
exclusion of assessment levels in the game. Control condition
learners played the game without assessment levels for 7 units,
spanning a total of 25 levels (Fig. 3). In contrast, assessment
condition learners played the game with two assessment levels at
the end of each unit (except the final unit) for a total of 37 levels
(Fig. 3). Other than the inclusion of these assessment levels, the
sequence and content of the levels were identical in both conditions.
The assessment levels were framed in a way to flow with the story
and encourage learners to help the robot with repairs to its logic
chip. We took extra care to ensure that the assessments were as close
as possible to other game levels, using the same interface, but
disabling the code editor, code execution buttons, tooltips, and
reference guide, requiring learners to recall their knowledge from
the previous levels, much like an exam would in a classroom
setting. Related studies have found that “closed book” exams
demand more difficult and intricate retrieval mental processes, but
also amplify testing effects [3,19]. Gidget explained these
constraints by stating the desire to complete the assessment levels
using minimal help from other resources.
Assessment levels came in two varieties: multiple choice (Fig. 1),
and click-on-the-grid (Fig. 4). Multiple choice assessments (Fig. 1)
required the player to select from one of the provided options,
which were randomized to minimize ordering effects [21]. All
multiple choice questions had one correct key, and three or four
incorrect distractors. Click-on-the-grid assessments (Fig. 4) required
the player to select a grid location as their answer to level question
which asked where either Gidget or another object in the world
would be located after the given code was run. The number of
possible choices were equal to the number of grid tiles for the level.
In addition to requiring the selection of a multiple choice option or
grid location, learners also had to write an explanation of 8 words or
more explaining their reasoning before submitting their answer. This
self-explanation approach has been shown to minimize guessing and
contribute to students’ learning and understanding [9,36].
Both types of assessments required learners to inspect the grid,
program, and goals, and then mentally simulate the execution of the
program to determine the intermediate or final state of some object
in the game world. These were therefore direct assessments of
players ability to precisely and accurately reason about the language
semantics. Clicking the “submit answer” button ran the code, step-
by-step, visually showing the player how the code was being
processed, and the final state of the program. Gidget would then
check the learners’ answer choice. If the choice was incorrect,

Gidget would show a sad face, give an explanation about why it was
wrong, then, show a happy face and proceed to explain what the
correct answer was, and why (Fig. 5, left). If the answer choice was
correct, Gidget would show a happy face and explained why the
learners’ answer choice was correct (Fig. 5, right). These design
decisions were based on our prior study that found personified
feedback affected learners’ engagement in a game [22], and studies
in classroom settings that show immediate feedback for exam
questions enhances retention of the tested materials and reduces
negative effects by incorrect answer choices or distractors [6].
The content of the assessments were designed to test the specific
ideas, concepts, and syntax rules covered in each unit. Distractors
were designed deliberately to test for common programming
misconceptions. Unit 1’s assessments were designed to be
straightforward so that learners could get familiar with how the
assessment levels worked. Unit 2’s assessments identified if learners
could follow the control flow and use the correct syntax for list
queries. Unit 3’s assessments tested variable assignment and
accessing array values correctly by index. Unit 4 tested variable
passing to functions and objects. Finally, Unit 5 tested whether the
learners could correctly trace control flow through conditional
statements. Like our curriculum, all assessment levels were
validated with participants in-person and online by observing that
they were sufficiently challenging, that they covered the concepts
from our list of learning objectives, and that they were not a barrier
in progressing through the game.

3.4 Participants and Procedure
We targeted non-programmers, defined as individuals who self-
reported that they had never written computer code and had never
taken a course related to computer programming. As mentioned in
Section 3, we used Amazon.com’s Mechanical Turk (MTurk), an
online marketplace where individuals can receive micro-payments
for doing small tasks called Human Intelligence Tasks (HITs).
Our pricing model and validation method was primarily carried over
from two prior studies [22,23]. Our goal was to set a base reward
that was high enough to attract participants, but also as low as
possible to minimize participants’ sense of obligation to spend time
on our HIT. Likewise, we wanted to have any bonus payments to
have a minimal effect on a worker’s decision to continue playing.
For our engagement study, where learners could quit at any time
after the first level, we set our base reward as $0.30 for starting the
HIT, and an additional $0.10 for each level completed. We set the
ceiling for submission time to 5 hours so that participants could
gauge the difficulty of the HIT compared to other HITs.

Figure 4. An assessment level where the learner has to click
where a particular object will be on the world grid after the

level’s program is run.

5" 4" 4" 4" 4" 3" 1"

1"2" 2" 2" 2" 2"

Unit"1" Unit"2" Unit"3" Unit"4" Unit"5"
"

Unit"6"
"

Unit"7"
"

C:"

A:" 2"
move

,"grab
,"

&"dro
p"

"

goto
,"

&"list
s" varia

bles"
funcA

ons,"

&"ob
jects

" Boole
ans" loops

"
(no"in

iAal"

code
)"

5" 4" 4" 4" 4" 3"

Figure 3. The level sequence for the (C)ontrol and
(A)ssessment conditions. The dark boxes show the number of

regular levels and the light boxes show the number of
assessment levels, each grouped into units.

For our speed study, players were required to complete the first
three units to receive payment (totaling 13 or 19 levels, depending
on the condition). There were no similar HITs to base our payment
on, so we ran several pilot tests to determine an optimal payment
rate. The HIT description was identical to that of the engagement
study, but also included text explaining that players were required to
complete “half the game” before being allowed to quit, and that it
could take several hours based on our past observations. We found
that nobody accepted/completed our HIT until we started paying $7
to complete the first half of the game and $0.10 for each additional
level completed (interestingly, engagement study participants would
have only been paid $2.20 to complete the same number of 19
levels, or a maximum of $4 for completing the entire game).
On game load, each participant was randomly assigned to the
control or assessment conditions. This information, along with their
current state in the game were logged on the client-side to ensure
participants would not be exposed to the other condition, even if
they refreshed their browser. Once a participant chose to quit, they
were given a survey to collect demographic data (e.g. gender, age,
education) and a unique code to receive payment for their
submission. In addition to the survey responses, we automatically
collected the number of levels completed, timestamps for level start,
level completion, quit, all character-level edits to each level’s
program, and execution button presses.
Each of our studies were between-subjects, with an even split
between the two conditions. Demographic data revealed that
participants in both studies and conditions were well proportioned,
with no significant differences between groups by gender, age, or
education (see Table 2). Consistent with other studies about the
demographics of MTurk workers [32], we found that our
participants were well-educated, with the majority reporting that
they had at least some college education or beyond (Table 2).

4. RESULTS
We provide quantitative evidence for our hypotheses about
engagement and speed. Throughout this analysis, we use the non-
parametric Wilcoxon rank-sum test with α=0.05 confidence, as our
data were not normally distributed.

4.1 Engagement: Effect on Level Completion
One of our measures of engagement was the number of levels
completed (see Table 3). To enable comparison of how far learners
had progressed through the game’s instructional content, we
subtracted the number of assessment levels completed from the total
number of levels completed (see Table 3).
There was a significant difference in the number of non-assessment
levels completed between the control and the assessment conditions
(W=10851, Z=1.97, N=200, p<.05). Participants in the assessment
condition voluntarily completed a median of 8 levels, whereas the
control condition completed a median of 6 levels. As additional
confirmation, we identified that within the speed study, assessment
condition participants were more likely to continue playing the
game past the minimum required 3 units, voluntarily completing
significantly more levels than the control condition participants
(W=277.5, Z=2, p<.05).
We examine more closely what may have influenced a participant’s

levels and 1 control condition participant and 4 assessment
condition participants completed the entire game. Many participants
from both groups quit the game after completing level 5 (10 players
in the control, 15 in the assessment) and level 6 (28 players in the
control condition, 12 players in the assessment condition). Level 6
corresponds to the beginning of a new unit (in this case, starting the
goto & lists unit), and Level 7 required learners to combine the use
of keywords from the previous unit and the new unit. Next, 21 of
the control group players quit after level 9 (level 10 started the
variables unit), and 11 assessment group players quit after level 13
(level 14 began the functions & objects unit). Since participants had
little programming knowledge and there was no difference in
demographics, the assessments likely affected motivation when new
concepts were being introduced (i.e. starting a new unit) and when
they had to be combined with previously learned concepts.

4.2 Engagement: Effect on Play Time
Our other measure of engagement was total time played. After
subtracting the time played in assessment levels, we found that
participants in the engagement study’s assessment group voluntarily
played the game for significantly more time than participants in the

Figure 5. Example feedback from the game assessments,
where the left image shows the sequence of messages when

the learners’ answer is wrong, and the right shows the
messages when the answer is correct.

Table 2. Participant demographics.Table 2. Participant demographics.Table 2. Participant demographics.Table 2. Participant demographics.Table 2. Participant demographics.
Study 1. EngagementStudy 1. Engagement Study 2. SpeedStudy 2. Speed

control
n=100

assessment
n=100

control
n=15

assessment
n=15

gender 55 males
45 females

58 males
42 females

9 males
6 females

8 males
7 females

some college 86% 87% 93% 100%

age 18-57 years
med=27.5

18-64 years
med=26

21-40 years
med=29

19-36 years
med=26

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Study 1. EngagementStudy 1. Engagement Study 2. SpeedStudy 2. Speed

control
n=100

assessment
n=100

control
n=15

assessment
n=15

Min. levels completed 2 2, 2 (adj) 13 19, 13 (adj)

Median levels completed 6 10, 8 (adj) 14 19.5, 14 (adj)

Max. levels completed 25 37, 25 (adj) 25 37, 25 (adj)

Min. time played 6.9 min 6.8 min 57.1 min 63.4 min

Median time played 26.3 min 41.9 min 121 min 102.2 min

Max. time played 142 min 296 min 188.6 min 198.3 min

decision to stop playing in Fig. 6. Everyone completed at least 2

control group (W=8434.5, Z=-3.9, N=200, p<.01). As shown in Fig.
7, the assessment condition learners voluntarily played twice as long
as those in the control condition, with a median overall play time of
41.9 minutes and 26.3 minutes, respectively.
Combined with the large difference in levels completed described
in the previous section, the significant differences in play time
suggests that assessments caused learners to continue playing even
when reaching unit boundaries or difficult levels.

4.3 Speed: Effect on Level Completion Time
While the engagement study results show that participants stayed
engaged longer when given assessments, this effect could be due to
either improved motivation, improved understanding, or a
combination of the two. To separate these effects, our speed study
held the incentives constant, requiring every participant to complete
a minimum number of levels for compensation.
Table 3 shows the descriptive statistics for the speed study results.
We found no significant difference in the total time participants
played the first three units of the game (W=222, Z=-0.4, N=30,
n.s.), even though learners in the assessment condition were
required to play an additional six levels. However, if we adjust the
times by excluding the time spent on assessment levels, we find the
difference in completion time was significant (W=171, Z=-2.5,
N=30, p<.05), with participants in the assessment condition
completing the three modules twice as fast overall, compared to
control condition learners. This shows suggests that assessments
helped learners master the game’s concepts faster and that adding a
small number of assessment levels essentially costs no extra time
for participants, but leads to better performance and engagement.

4.4 Speed: Effect on Play Time & Style
To better understand how participants used their time playing the
game in the speed study, we examined participants’ code versions,
code executions, and code edit time. Descriptive statistics for all the
data reported in this section can be seen in Table 4.
There was no significant difference in the overall number of code
versions participants ran for the first three units between conditions.
In addition, there was no significant differences in how frequently
the participants used the incremental execution control buttons (one
step, one line, and stop) overall for the first three units of the game.
However, participants in the control condition used the to end
execution button significantly more than their counterparts,
suggesting that they consumed significantly less instructional
content, as the to end execution prevented players from reading
Gidget’s explanations of program execution. Control condition
participants also spent (nearly significant) more time editing their
code (as indicated by having their mouse cursor or text caret in the
coding pane) than those in the assessment condition. These results
suggest that learners in the assessment condition may have spent
more time understanding program semantics by executing the
program stepwise instead of reading it or executing it at full speed.

Inspecting the overall time each participant spent on each unit, we
found a general trend of assessment condition participants
completing levels faster than the control group (see Table 4, median
times for last 3 rows). This is especially true of the third unit, which
shows that the assessment condition participants completed the unit
significantly faster than their control counterparts. Closer
examination shows that participants in the assessment condition
finished significantly faster in the first level of the third module
(W=164, Z=-2.8, N=30, p<.01), which introduced variables, and the
fourth level of the third module (W=172, Z=-2.5, N=30, p<.05),
which required the use of all the keywords and concepts used
throughout the unit.
Finally, we calculated how much time assessment condition
participants spent on assessment levels in relation to regular levels.
Overall, they played a median of 22 minutes across 6 assessment
levels. Checking the ratio of assessment play time to overall play
time, we found that participants spent a median of 23.8% of their
total time playing assessment levels.
We also examined how well assessment condition learners
performed on the assessments and found that they averaged 4 out of
6 correct. We read through participants' incorrect responses to
identify their misconceptions. We found that the majority of
misconceptions were the ones we expected and for which we
created appropriate distractors (as detailed in Section 3.3). The one
misconception that learners encountered that we had not expected
was in the first unit. In the first assessment level, 6 learners were
unsure whether a number was required after a move command (e.g.,
“up” vs. “up	
 1”) and got the answer incorrect. However, 5 of these 6
participants were able to correctly answer the next assessment,
which asked a similar question. We suspect that misconceptions
here and in later assessment levels were addressed and clarified
since each assessment showed the code execution, explained why
the participants’ chosen answer was false, and why the correct
answer was true even if the participants’ answer choice was correct.

5. DISCUSSION
Our findings demonstrate that including explicit multiple choice
assessments with self-explanations in a discretionary programming
game can significantly increase learner’s engagement and speed. In
the case of Gidget, these effects were strong, with the learners given
assessments completing 30% more non-assessment levels (Table 3),
playing twice as long (Table 3), and completing levels about 20%
faster (Fig. 7), than those not given assessments.
We also found that speed study learners in the assessment condition
were only getting the correct answer 66.67% of the time. However,
they were spending an average of 24.9% of their total play time on
the assessments, and in the free-form answer section, many
participants gave reasonable explanations for why they thought their
particular answer was correct (see Section 4.4). This indicated that
learners were trying on the assessment levels, even though they
could proceed regardless of the outcome of their answer.

showing how many participants remain after each level.
The vertical bars indicate unit boundaries.

Figure 7: In the engagement study, players in the assessment
group voluntarily played the game for significantly more

time than players in the control group.

Figure 6. The engagement study’s adjusted levels completed,

There are several possible interpretations of our results. The
difference in performance that we saw in the speed study might be
because the assessment levels corrected misconceptions by
providing the correct answers (whether or not the learner submitted
the correct answer), which has been shown to improve performance
in compulsory settings [8,20].
It is also possible that since the code in assessment levels were not
executable, learners had to mentally simulate and trace the
program’s execution, giving them practice understanding the
program semantics unaided. Since control condition leaners’ were
never presented levels with these constraints and were always able
to execute their code to see what happens, they were likely more
inclined to do that; this is consistent with the finding that control
condition learners used the “to end” execution button significantly
more than the assessment condition learners (see Section 4.4), rather
than taking the time to understand how the code was running.
A third explanation is that since access to the reference guide and
tooltips were disabled in assessment levels, learners in the
assessment conditions were required to recall how the keywords and
syntax worked using their memory. This may have allowed them to
understand both the syntax and semantics of the keywords better
than those in the control condition, who were always presented with
levels that allowed quick access to definitions and examples through
the tooltips and reference guide.
Finally, since assessment levels required an explanation of the
answer choice, assessment condition learners had extra opportunity
to reflect on their selections and translate that into text. This may
have allowed them to identify misconceptions on their own, and
may have also provided a means of direct comparison to the answer
explanations Gidget gave about the incorrect and correct answer
choices. Allowing learners to explain their answer choices may also
increase the positive effect of assessments [1], including improved
understanding of the material being assessed [9].
These observations may also explain the completion of more levels
and the longer play time by the assessment group in our engagement
study. Those in the control condition may have found later levels too
difficult, causing frustration and ultimately making them quit. In
contrast, those in the assessment condition may have found these
levels less difficult due to their experience from assessment levels,
but sufficiently challenging to keep them engaged with the game.

These results have implications for future work in educational
games and other discretionary computer programming education
resources. In our study, we found that our learners completed more
levels, played the game longer, and were faster in regular levels
when given assessments. Integrating assessments in a manner that
flows with a game’s interactions, is part of the story, and framed in a
way that has the player helping a game character in a fun way,
appears to keep learners engaged, even when these tasks are still
obviously a test. Codecademy could integrate assessments that are
tightly coupled with the style and content of the site. Not only can it
improve students’ learning, but it can also be used as a resource to
track students’ progress and make adjusting changes or suggestions
to their curricula. Our findings may be less generalizable to large-
scale resources like massively open online courses (MOOCs)
however, which are still largely similar to traditional classroom
settings, where there are lecture/content resources, and assignments.
However, moving MOOCs’ content to more interactive instruction
and assignments may open the opportunity to integrate assessments
in a manner similar to the study we have described.

5.1 Threats to Validity
Our study has several limitations that limit its generalizability. First,
MTurk allows participants to self-select into HITs given that they
meet certain qualifications. Our HIT only required that participants
were living in the USA and had no programming experience.
Additionally, filtering HITs for certain payouts or tags could have
affected participant recruitment. These limitations introduce a
sampling bias, which may limit the generalizability of our results to
the particular populations found on MTurk.
There may also be limitations to the generalizability of the game
itself. We focus on a specific type of programming language and a
specific framing of programming. These may have interacted with
assessments in a way that may not occur in other settings.
Finally, though small, there was an economic incentive for
participants to participate in the study. We tried to minimize this
effect as much as possible, and the feedback from of our pilot study
participants and the majority of MTurk participants suggests that
people would be willing to play the game without these economic
incentives, especially if they were allowed to quit at any time.

6. CONCLUSIONS & FUTURE WORK
We investigated whether providing assessments to self-directed,
independent learners playing a game designed to teach
programming would increase a learner’s engagement and speed in
the game. By adding assessments to the end of each unit—a
collection of levels designed to teach a set of programming
keywords or concepts—we found that learners who were given
assessment levels complete more game levels and play the game
longer and that they completed non-assessment levels faster.
These findings raise many questions for future work. How
important was it that the assessments be tightly integrated into the
game mechanics, and what is the effect of other instructional
content on engagement and speed, such as worked examples [37]
and adaptions of peer instruction [31]? How do these effects play
out in other forms of discretionary computing education such as
MOOCs, online tutorials, and constructionist approaches to learning
programming? With the rising interest in learning to program, and
the proliferation of resources to do so, we believe that knowledge
about the interaction between the design of these resources and
engagement and learning will be essential for learner retention and
effective pedagogy.

7. ACKNOWLEDGEMENTS
We thank Philip Reed for contributions to the in-game reference
guide, Andre Stackhouse for his help with levels, and Sean Fullerton

Table 4. Summary statistics for the speed study learners’ play
styles, with significant results in bold.

Table 4. Summary statistics for the speed study learners’ play
styles, with significant results in bold.

Table 4. Summary statistics for the speed study learners’ play
styles, with significant results in bold.

Table 4. Summary statistics for the speed study learners’ play
styles, with significant results in bold.

Table 4. Summary statistics for the speed study learners’ play
styles, with significant results in bold.

control
n=15

assessment
n=15

significance test
N=30

significance test
N=30

code
versions

58-223
med=75

50-124
med=71 W=204.5, Z=-1.1 n.s.

“one step”
clicks

0-2901
med=268

1-1883
med=256 W=243, Z=0.4 n.s.

“one line”
clicks

8-426
med=90

0-357
med=40 W=243, Z=0.5 n.s.

“to end”
clicks

11-73
med=31

4-59
med=19 W=166.5, Z=-2.7 p<.01

“stop”
clicks

0-112
med=13

1-51
med=21 W=241.5, Z=0.35 n.s.

focus
time

29.1-177.2sec
med=61.7

22.7-105.2sec
med=39.6 W=185, Z=-1.9 p=.051

unit 1
completion

10.8-57.2min
med=22

7.6-46.9min
med=24.2 W=227, Z=-0.02 n.s.

unit 2
completion

12.1-70.2min
med=37.3

20.1-73.9min
med=33.5 W=210, Z=-0.9 n.s.

unit 3
completion

8-108min
med=40.8

6.4-110.4min
med=19.8min W=176, Z=-2.3 p<.05

for discussions about assessments. This material is based upon work
supported by the National Science Foundation (NSF) under Grants
CNS 1240786, CCF 0952733, and OISE 1210205. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF.

8. REFERENCES
1. Aleven, V., & Koedinger, K.R. (2002). An effective

metacognitive strategy: Learning by doing and explaining with
a computer-based cognitive tutor. CogSci, 26(2), 147-179.

2. Aleven, V., Myers, E., Easterday, M., & Ogan, A. (2010).
Toward a framework for the analysis and design of educational
games. IEEE DIGITEL, 69-76.

3. Bjork, R.A. (1999). Assessing our own competence: heuristics
and illusions. In Gopher, D., & Koriat, A., Attention and
performance XVII: Cognitive regulation of performance,
435-459. Cambridge, MA: MIT Press.

4. Black, P., & Wiliam, D. (1998). Assessment and classroom
learning. Assessment in education, 5(1), 7-74.

5. Boustedt, J., Eckerdal, A., McCartney, R., Sanders, K.,
Thomas, L., & Zander C. (2011). Students’ perceptions of the
differences between formal and informal learning. ACM ICER,
61–68.

6. Butler, A.C., & Roediger, H.L. (2008). Feedback enhances the
positive effects and reduces the negative effects of multiple-
choice testing. Memory & Cognition, 36(3), 604-616.

7. Campbell, J., & Mayer, R.E. (2009). Questioning as an
instructional method: Does it affect learning from lectures.
Applied Cognitive Psychology, 23, 747-759.

8. Carpenter, S.K., Pashler, H., & Vul, E. (2006). What types of
learning are enhanced by a cued recall test? Psychonomic
Bulletin & Review, 13, 826-830.

9. Chi, M.T., De Leeuw, N., Chiu, M.H., & LaVancher, C.
(1994). Eliciting self-explanations improves understanding.
Cognitive Science, 18(3), 439-477.

10. Cross, J. (2006). Informal learning: rediscovering the natural
pathways that inspire innovation and performance. San
Francisco, CA: Pfeiffer.

11. Csikszentmihalyi, M. (1990). Flow: The psychology of optical
experience. New York, NY: Harper Perrennial.

12. Daniel, J. (2012). Making sense of MOOCs: Musings in a
maze of myth, paradox and possibility. JIME, 3.

13. Eagle, M., & Barnes, T. (2009). Experimental evaluation of an
educational game for improved learning in introductory
computing. ACM SIGCSE Bulletin, 41(1), 321-325.

14. Garris, R., Ahlers, R., & Driskell, J.E. (2002). Games,
motivation, and learning: A research and practice model.
Simulation & Gaming, 4, 441–467.

15. Gee, J.P. (2003). What video games have to teach us about
learning and literacy. New York, NY: Palgrave Macmillan.

16. Hays, R.T. (2005). The effectiveness of instructional games: A
literature review and discussion (Technical Report 2005-004).
Naval air warfare ctr. training systems division. Orlando, FL.

17. Johnson, C.I., & Mayer, R.E. (2009). A testing effect with
multimedia learning. J. Edu. Psychology, 101(3), 621-629.

18. Kapp, K.M. (2012). The gamification of learning and
instruction: game-based methods and strategies for training
and education. San Francisco, CA: Pfeiffer.

19. Karpicke, J.D., & Roediger, H.L. (2007). Expanding retrieval
promotes short-term retention, but equally spaced retrieval
enhances long-term retention. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 33, 704-719.

20. Karpicke, J.D., & Roediger, H.L. (2007). Repeated retrieval
during learning is the key to long-term retention. Journal of
Memory and Language, 57, 151-162.

21. Kehoe, J. (1995). Writing multiple-choice test items. Practical
Assessment, Research & Evaluation, 4(9), retrieved April 2013
from http://pareonline.net/getvn.asp?v=4&n=9

22. Lee, M.J., & Ko, A.J. (2011). Personifying programming tool
feedback improves novice programmers' learning. ACM ICER,
109-116.

23. Lee, M.J., & Ko, A.J. (2012). Investigating the role of
purposeful goals on novices' engagement in a programming
game. IEEE VL/HCC, 163-166.

24. Malone, T.W. (1981). What Makes Things Fun to Learn? A
Study of Intrinsically Motivating Computer Games. Palo Alto,
CA: Xerox.

25. McDaniel, M.A., Anderson, J.L., Derbish, M.H., & Morrisette,
N. (2007). Testing the testing effect in the classroom.
European Journal of Cognitive Psychology, 19(4-5), 494-513.

26. McNamara, D., Jackson, G., Graesser, A. (2009) Intelligent
tutoring and games. Artificial Intelligence in Education, 1–10.

27. Mislevy, R.J., Behrens, J.T., Dicerbo, K.E., Frezzo, D.C., &
West, P. (2012). Three things game designers need to know
about assessment. Assessment in game-based learning, 59-81.

28. Pear, J.J. (2004). Enhanced feedback using computer-aided
personalized system of instruction. In W. Buskist, V. W.
Hevern, B.K. Saville, & T. Zinn, (Eds.), Essays from
excellence in teaching (Chapter 11).

29. Poehner, M. E. (2007). Beyond the test: L2 dynamic
assessment and the transcendence of mediated learning. The
Modern Language Journal, 91, 323–340.

30. Randel, J.M., Morris, B.A., Wetzel, C.D., & Whitehill, B.V.
(1992). The effectiveness of games for educational purposes:
A review of recent research. Simulation & Gaming, 23(3),
261-276.

31. Riggio, R. E. (2007). Reciprocal peer tutoring: Learning
through dyadic teaching. In B. K. Saville, T. E. Zinn, S. A.
Meyers, & J. R. Stowell (Eds.), Essays from excellence in
teaching, (Chapter 10).

32. Ross, J., Irani, I., Silberman, M. Six, Zaldivar, A., Tomlinson,
B. (2010). Who are the crowdworkers?: Shifting demographics
in Amazon Mechanical Turk. ACM CHI, 2863-2872.

33. Sadler, D. R. (1989). Formative assessment and the design of
instructional systems. Instructional Science, 18(2), 119-144.

34. Shute, V.J. (2011). Stealth assessment in computer-based
games to support learning. Computer games and instruction,
55(2), 503-524.

35. Shute, V.J., Ventura, M., Bauer, M., & Zapata-Rivera, D.
(2009). Melding the power of serious games and embedded
assessment to monitor and foster learning. Serious games:
Mechanisms and Effects, 295-321.

36. Smith, T. (2007). Exams as learning experiences: One nutty
idea after another. Beyond Tests and Quizzes: Creative
Assessments in the College Classroom, 115, 71.

37. Sweller, J. (2006). The worked example effect and human
cognition. Learning and Instruction, 16(2) 165–169.

38. Vrugt, A.J., Langereis, M.P., & Hoogstraten, J. (1997).
Academic self-efficacy and malleability of relevant
capabilities as predictors of exam performance. Journal of
Experimental Education, 66(1), 61-72.

39. Young, J. (2008). "Badges" earned online pose challenge to
traditional college diplomas. Chronicle of Higher Education.

http://pareonline.net/getvn.asp?v=4&n=9
http://pareonline.net/getvn.asp?v=4&n=9
