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ABSTRACT 
Assessments have been shown to have positive effects on learning 
in compulsory educational settings. However, much less is known 
about their effects in discretionary learning settings, especially in 
computing education and educational games. We hypothesized 
that adding assessments to an educational computing game would 
provide extra opportunities for players to practice and correct 
misconceptions, thereby affecting their performance on 
subsequent levels and their motivation to continue playing. To test 
this, we designed a game called Gidget, in which players help a 
robot find and fix defects in programs that follow a mastery 
learning paradigm. Across two studies, we manipulated the 
inclusion of multiple choice and self-explanation assessment 
levels in the game, measuring their impact on engagement and 
level completion speed. In our first study, we found that including 
assessments caused learners to voluntarily play longer and 
complete more levels, suggesting increased engagement; in our 
second study, we found that including assessments caused learners 
to complete levels faster, suggesting increased understanding. 
These findings suggest that including assessments in a 
discretionary computing education game may be a key design 
strategy for improving informal learning of computing concepts. 

Categories and Subject Descriptors 
K.3.2 Computer Science Education: Introductory Programming, 
D.2.5 Testing and Debugging. 

Keywords 
Programming, assessment, engagement, speed, debugging, serious 
game, educational game. 

1. INTRODUCTION 
Recent press about code.org and other efforts to increase computing 
literacy have begun to attract millions of people to learn computer 
programming. Many of these individuals are turning to discretionary 
online resources such as Codecademy, Kahn Academy, Coursera, 
and CodeHS, and research environments such as Alice and Scratch, 
to learn. Although research on these learning materials is still sparse, 
learners report that they enjoy these informal resources more than 
traditional classes because they allow  for flexibility in how they 
learn, they give learners a better sense of retaining the material [5], 
and they are more motivating, engaging, and interesting than 
traditional classroom courses [10]. Some of these attitudes can be 

attributed to these resources’ use of game mechanics such as 
scaffolded materials, structured mastery learning, concrete goals, 
and extrinsic incentives such as badges [39]. 
Unfortunately, many of these resources struggle to keep learners 
engaged [12] and few of them involve explicit evaluations of 
learning, making it unclear how much learners actually learn or 
retain. Therefore, as these resources increase in popularity, a 
significant design challenge will be improving engagement, while 
also demonstrably improving understanding. 
One way to potentially improve both understanding and engagement 
is to use assessments [29]. Assessments, which directly tests 
learners’ knowledge by asking them to explicitly answer questions 
about the material, are widely used in compulsory settings not only 
to measure learners’ progress and what they know [6], but also to 
improve students’ learning itself [4]. Assessments improve learning 
and understanding partly by helping students practice course 
material and by clearing up misconceptions [8,20]. 
Unfortunately, there is a lack of research about how including 
assessments might affect learners’ use of discretionary learning 
resources [5]. Moreover, there is reason to believe that assessments 
could actually harm engagement, even if they improve learning. For 
example, assessments can lead to test-anxiety, negatively affecting 
engagement [34], especially if they get the wrong answer or 
feedback is lacking [6]. Including assessments in educational games 
or resources that use game mechanics may be even more harmful, as 
they may interfere with a player’s enjoyment of the game, creating a 
“testing” mode that is poorly integrated with the rest of the game, 
leading the learner to disengage or even quit the activity. 
To begin exploring the role of assessments in discretionary 
computing education games, we investigated the effect of integrated 
learning assessments on both engagement and speed across two 
online controlled experiments where learners played Gidget [22,23], 
a debugging game in which learners play through a series of levels, 
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Figure 1.  Does providing in-game assessment questions help 
discretionary learners playing an educational programming 
game increase engagement and level completion speed? This 

figure shows a multiple choice assessment in such a game.
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finding and fixing  defects in a robot’s programs. In our two 
experiments, we manipulated the inclusion of explicit assessments 
like the one shown in Figure 1, which asks learners  to indicate the 
final  position of the robot by mentally  simulating the given 
program’s execution. In the rest of this  paper, we discuss prior work 
on educational games and assessments in different learning 
environments, detail our game and study design, and discuss our 
results and their implications on computing education.

2. RELATED WORK
Educational  games have become an increasingly popular way to 
teach STEM (science, technology, engineering, and mathematics) 
subjects [16,30]. Researchers have taken advantage of this interest 
to improve educational games to be more fun, informative, and 
educational. Some research focuses on creating games that directly 
try to teach a skill  or subject such as computer programming 
[13,22,23], others focus on adding game-like features to existing 
teaching systems such as intelligent tutors [18,26], and some focus 
more generally on creating frameworks for effective evaluation 
[2,34,35]. Several  works  have also attempted to identify the specific 
parts  of games that motivate [24] and attract people to  pursue 
computing education [14,15,24], but fewer have examined how to 
effectively measure the outcomes of educational games [35].
Assessments  have long been used in compulsory settings to keep 
students’  engaged with the course material, encourage reviewing or 
reflecting on past  material, and measure learning [4,33]. They have 
been shown to be useful for students to orient, organize, and 
integrate study materials, leading to measurable performance gains 
[7]. Moreover, receiving  feedback from assessments can affect 
learners’  self-efficacy, which plays an important  role in  future 
performance [38], and also provides an opportunity for learners to 
reflect on their work and correct any misconceptions they have 
about the material [8,20]. Of particular interest is the testing effect, 
which states that minor, incremental testing leads to better retention 
and higher scores when compared to repeatedly studying the same 
material [7,17,25]. This demonstrates that assessments not only 
have utility  for educators to  track their students’  progress, but  are 
also important tools to promote student learning and retention.
Much less  is  known about assessments in discretionary  settings, 
particularly for educational games, and how they might interact with 
other gameplay elements to affect players’  engagement with the 
educational  material. This is particularly true of learning 
technologies for computing education. Although researchers agree 
that adding assessments to games is worthwhile since they build on 
the same principles of learning (to be successful in the game, or to 
learn some additional material) [27], the lack of use in actual 
practice makes it unclear how the inclusion of assessments in games 
will influence players. This is a challenging task, since deviating too 
far from the gameplay can be distracting, boring, or disengaging, 
which is particularly important in  the context of a discretionary 
setting where a learner can choose to leave at  any time [34]. 
Csikszentmihalyi  describes this as maintaining  flow, where the 
learner is deeply immersed in the game experience [11]. Shute et. 
al’s work attempts to address these issues  through stealth 
assessments, which are intended to reduce text anxiety, and blur the 
distinction between game content, assessment, and learning [34,35]. 
The goal of this method is to reduce the likelihood of explicit 
assessments from disrupting flow and decreasing engagement while 
playing a game. However, research in compulsory settings, where 
students know they are being tested, have found that explicit 
assessments and feedback help students retain information better 
and keep them motivated with the educational material [7,17,25]. 
Therefore, it  is currently unclear how making assessments an 
explicit part of a game will affect learners’  perceptions of the game, 
their motivation to play, their recall ability, and their performance.

3. METHOD
The aim of our study was to  determine how integrated, explicit 
assessments  in an educational  computing game affects engagement 
and task completion speed in self-directed learners, and to identify 
the extent of these effects. To do this, we designed Gidget (Fig. 2), 
a game that teaches programming by asking the player to fix a 
damaged robot’s faulty code to help it accomplish its missions 
(detailed further in Section 3.1). Each game level teaches a 
particular programming concept, challenging the player to find and 
fix the defects in each level’s program so that it  passes the provided 
goals, which are executable test cases. Following  the mastery 
learning paradigm [28], each of the game’s levels  is designed to be 
passable only if the learner has  grasped a particular concept in the 
game’s programming language.
We conducted two separate controlled experiments, with the first 
measuring engagement and the second measuring task completion 
speed (see Table 1). Each of our experiments  had two conditions: 
the control condition’s curriculum consisted of a series of levels 
without assessments, whereas the experimental condition (which 
we will  call the assessment condition), was identical, but  also 
included two assessment levels at the end of each set of levels.
In our engagement study, learners  could quit any time, as with any 
discretionary learning material. We hypothesized that the learners 
in the assessment condition would play the game for longer and 
complete more levels because the assessments would offer 
additional opportunities to practice each units’ concepts, leading to 
better understanding of the material  and reducing the likelihood of 
encountering difficulties and discouragement in subsequent levels. 
We measured both  the total number of levels completed and the 
total time playing the game.
Our speed  study followed the same structure as the engagement 
study but was designed to enable a direct comparison of how 
quickly participants completed Gidget game levels. To enable this 
comparison, we operationalized speed as  the total time required to 
complete the first three sets of levels in the game. We hypothesized 
that even though players in the assessment  condition would have to 
spend more time on the assessment levels, the extra practice and 
feedback they received through the assessments would result  in 
them being more successful in subsequent  levels, completing 
individual levels faster than those in the control condition.
Both the engagement and speed studies  were between-subjects 
designs with 200 and 30 participants respectively, split evenly 
across conditions. Participants were recruited on Amazon.com’s 
Mechanical Turk. The speed study was launched after the 
engagement  study, without  overlap, to prevent  people from playing 
the game simultaneously; we also  prevented players more than 
once. Though we attempted to recruit the same number of 
participants for both treatments, the speed study attracted fewer 
participants because it required a larger up-front time commitment.

Table 1. Experimental design of our two studies.
Study 1: “Engagement” Study 2: “Speed”

Independent 
variables

Gidget game with or without assessment levelsGidget game with or without assessment levels

Dependent 
variable(s)

#1: the number of regular 
levels completed
#2: total time playing the 
game

#1: the time required to 
complete a set of levels (3 
units of the game)

Participants 200 total; 100 per condition 30 total; 15 per condition

Payment 
criteria

Incentive of $0.10 per level 
completed, up to a total of 
25 (control) or 37 levels 
(assessment); can quit 
playing at any point.

Incentive of $7.00 after 
playing 3 units worth of 
levels; can quit any time 
after 3 units, but earn 
additional $0.10 per level 
completed.



3.1 Gidget, The Programming Game
Gidget  is an HTML5 web application that  is playable in a browser. 
The game is  motivated by a story: there has been a chemical spill 
from a factory and Gidget, a small robot  capable of identifying and 
solving problems with programs, has been deployed to clean up the 
area. Unfortunately, Gidget was damaged in transit, and is  only able 
to provide code (Fig. 2-1) that partially, but not completely  solves 
each level’s goals (Fig. 2-3). It is the player’s job to help the robot 
through missions by diagnosing and fixing  the problems in each 
level’s code (Fig. 2-1), then executing the code (Fig. 2-2), so the 
robot can fulfill the executable mission goals (Fig. 2-3).
The game uses  an imperative, Python-like programming language 
designed specifically for the game. The language supports 
dynamically typed-variables, Boolean operators and expressions, 
conditionals, mathematical operators, objects, functions, and 
domain-specific keywords for the game characters to interact with 
their world. These interactions primarily include finding things in 
the world (Fig. 2-4), going to them, checking their properties, and 
carrying them to other places on the grid. In  some cases, objects 
have their own abilities, which Gidget can call  as functions. After 
each execution  step, the effect of these commands are shown in the 
‘program state’  panel (Fig. 2-5) and explained by Gidget (Fig. 2-6) 
to reinforce the semantics  of each command. Each step costs Gidget 
1 unit of ‘energy’  (displayed at the top of Fig. 2-5), which forces 
players to consider how to write efficient  programs that  can be 
solved using the allocated amount of energy.
To aid the players with debugging, the game offers four execution 
controls: one step, one line, to end, and stop (Fig. 2-2). The one step 
button evaluates  one compiled instruction, displaying text 
explaining the execution of the step. The one line button evaluates 
all steps on one line of the code, just as a breakpoint debugger does, 
jumping to the final output  of that line. The to end button evaluates 
the entire program and the goals, animating each step in quick 
succession. The stop button allows the player to halt the program 
and edit code during any part of the execution. When the learner 
uses one step or one line, Gidget provides a detailed explanation of 
the execution of each statement in  the program, highlighting 
changes in the runtime environment. This  serves as the game’s 

primary instructional content, explicitly teaching the language 
syntax and semantics.
To help learners start playing Gidget, the game presents a ten-slide 
tutorial to every player upon game start. The game also features  an 
in-game reference guide, providing explanations and examples of 
each command in the language, along with information about 
programming concepts such as variables, functions, the stack, and 
loops. The reference guide was available as a standalone help guide 
or as tooltips that appeared when hovering over tokens in  the code 
editor. Finally, the game’s code editor provides  keystroke-level 
feedback about syntax and semantics errors, as in Fig. 2-6, 
highlighting  erroneous code in red and explaining the problem in 
Gidget’s speech bubble.

3.2 Curriculum
There were a total  of 7 units in  the game, with each unit containing 
a set of levels  focusing on a related set of programming keywords or 
concepts (see Fig. 3). Unit 1 focused on moving Gidget  and other 
objects around in the world by using simple keywords such as up, 
down, left, right, grab, and drop. Unit 2 furthered the ideas from the 
previous section, introducing the goto keyword, and working with 
lists. Unit  3 introduced variables, types, and values. Unit 4 presented 
the declaration and use of functions and objects. Unit 5 showed how 
to use Boolean values, expressions, and logic. Unit 6 focused on 
loops. Finally, Unit 7 did not teach any new concepts, instead 
challenging the player to  write solutions from scratch to satisfy the 
level’s goals. The last  levels in each unit  were designed to  be a 
cumulative overview, requiring the learner to recall  and use the 
keywords and concepts covered in that unit. 
The order of units and the sequence of levels was designed 
iteratively based on curricula found in  CS1 textbooks, pilot testing 
with novice programmers, and the authors’  cumulative experience 
teaching CS1 courses. A list of overall  learning objectives drove the 
creation, consolidation, and refinement  of the levels [2]. Each level 
was designed to address one or two specific learning objectives 
related to the language syntax or semantics. The sequence of levels 
was also influenced by the game story, and  by the language itself 
(since certain keywords and concepts are easier to understand once 

Figure 2. Gidget is a game in which players help a damaged robot by fixing its broken programs. The player’s progress is shown 
below the level title, with learning units divided by vertical bars. Regular levels are circles, and assessment levels are squares.



other concepts have been learned). Finally, levels were designed to 
progress the story and have some purpose embedded in the goals 
since we found previously that purposeful goals influence learners’ 
engagement [23]. This  sequence was  validated by testing with 
participants in-person and online by observing that the order of 
levels was not a barrier in their progress through the game.

3.3 Assessment Levels
The primary manipulation in our two studies  was  the inclusion or 
exclusion of assessment levels in the game. Control condition 
learners played the game without assessment levels  for 7 units, 
spanning a total of 25 levels (Fig. 3). In  contrast, assessment 
condition learners played the game with two assessment levels at 
the end of each unit (except the final unit) for a total of 37 levels 
(Fig. 3). Other than the inclusion of these assessment  levels, the 
sequence and content of the levels were identical in both conditions.
The assessment levels were framed in a way to flow with the story 
and encourage learners to help the robot with repairs to its logic 
chip. We took extra care to ensure that the assessments were as close 
as possible to other game levels, using the same interface, but 
disabling the code editor, code execution buttons, tooltips, and 
reference guide, requiring learners to recall their knowledge from 
the previous levels, much like an exam would in a classroom 
setting. Related studies have found that “closed book” exams 
demand more difficult and intricate retrieval mental processes, but 
also amplify testing effects [3,19]. Gidget explained these 
constraints  by stating the desire to complete the assessment levels 
using minimal help from other resources.
Assessment levels came in two varieties: multiple choice (Fig. 1), 
and click-on-the-grid (Fig. 4). Multiple choice assessments (Fig. 1) 
required the player to select from one of the provided options, 
which were randomized to minimize ordering effects [21]. All 
multiple choice questions had one correct key, and three or four 
incorrect distractors. Click-on-the-grid  assessments (Fig. 4) required 
the player to select a grid location as their answer to level question 
which asked where either Gidget or another object in the world 
would be located after the given code was run. The number of 
possible choices were equal to the number of grid tiles for the level. 
In addition to requiring the selection of a multiple choice option or 
grid location, learners also had to write an explanation of 8 words or 
more explaining their reasoning before submitting their answer. This 
self-explanation approach has been shown to minimize guessing and 
contribute to students’ learning and understanding [9,36].
Both types of assessments required learners to  inspect the grid, 
program, and goals, and then mentally simulate the execution of the 
program to determine the intermediate or final state of some object 
in the game world. These were therefore direct assessments of 
players ability to precisely and accurately reason about  the language 
semantics. Clicking the “submit answer” button ran the code, step-
by-step, visually  showing the player how the code was being 
processed, and the final state of the program. Gidget would then 
check the learners’  answer choice. If the choice was  incorrect, 

Gidget  would show a sad face, give an explanation about why it was 
wrong, then, show a happy face and proceed to explain what the 
correct answer was, and why (Fig. 5, left). If the answer choice was 
correct, Gidget would  show a happy face and explained why the 
learners’  answer choice was correct (Fig. 5, right). These design 
decisions were based on our prior study that found personified 
feedback affected learners’  engagement in a game [22], and studies 
in classroom settings that  show immediate feedback for exam 
questions enhances retention of the tested materials  and reduces 
negative effects by incorrect answer choices or distractors [6].
The content of the assessments were designed to test  the specific 
ideas, concepts, and syntax rules covered in each unit. Distractors 
were designed deliberately to test for common programming 
misconceptions. Unit 1’s assessments were designed to  be 
straightforward so that learners could get familiar with how the 
assessment levels worked. Unit 2’s  assessments identified if learners 
could follow the control  flow and use the correct syntax for list 
queries. Unit 3’s  assessments tested variable assignment and 
accessing array values correctly by index. Unit 4 tested variable 
passing to functions and objects. Finally, Unit 5 tested whether the 
learners could correctly trace control  flow through conditional 
statements. Like our curriculum, all  assessment  levels were 
validated with participants in-person and online by observing that 
they were sufficiently challenging, that they covered the concepts 
from our list of learning objectives, and that they were not a barrier 
in progressing through the game.

3.4 Participants and Procedure
We targeted non-programmers, defined as individuals  who self-
reported that they had never written computer code and had never 
taken a course related to  computer programming. As  mentioned in 
Section 3, we used Amazon.com’s Mechanical  Turk (MTurk), an 
online marketplace where individuals can receive micro-payments 
for doing small tasks called Human Intelligence Tasks (HITs).
Our pricing model  and validation method  was primarily carried over 
from two prior studies [22,23]. Our goal was to set a base reward 
that was high enough to attract participants, but also as low as 
possible to minimize participants’  sense of obligation to spend time 
on our HIT. Likewise, we wanted to have any bonus payments  to 
have a minimal effect on a worker’s decision to continue playing.
For our engagement study, where learners could quit at any time 
after the first level, we set our base reward as $0.30 for starting the 
HIT, and an additional $0.10 for each level completed. We set the 
ceiling for submission time to  5 hours so that participants could 
gauge the difficulty of the HIT compared to other HITs. 

Figure 4.  An assessment level where the learner has to click 
where a particular object will be on the world grid after the 

level’s program is run.
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For our speed  study, players were required to complete the first 
three units to receive payment (totaling 13 or 19 levels, depending 
on the condition). There were no similar HITs to base our payment 
on, so we ran several pilot  tests to  determine an optimal payment 
rate. The HIT description was identical to that of the engagement 
study, but also included text explaining that players  were required to 
complete “half the game” before being allowed to quit, and that it 
could take several hours based on our past observations. We found 
that nobody accepted/completed our HIT until we started paying $7 
to complete the first  half of the game and $0.10 for each additional 
level  completed (interestingly, engagement study participants would 
have only been paid $2.20 to complete the same number of 19 
levels, or a maximum of $4 for completing the entire game). 
On game load, each participant was randomly assigned to the 
control or assessment conditions. This information, along with their 
current state in the game were logged on the client-side to ensure 
participants would not be exposed to the other condition, even if 
they refreshed their browser. Once a participant chose to quit, they 
were given a survey to collect demographic data (e.g. gender, age, 
education) and a unique code to receive payment  for their 
submission. In addition to the survey responses, we automatically 
collected the number of levels completed, timestamps for level start, 
level  completion, quit, all character-level  edits  to each level’s 
program, and execution button presses.
Each of our studies were between-subjects, with an even split 
between the two conditions. Demographic data revealed that 
participants in both studies and conditions were well proportioned, 
with no  significant differences between groups  by gender, age, or 
education (see Table 2). Consistent with other studies about the 
demographics  of MTurk workers  [32], we found that our 
participants were well-educated, with the majority reporting that 
they had at least some college education or beyond (Table 2).

4. RESULTS
We provide quantitative evidence for our hypotheses about 
engagement and speed. Throughout  this  analysis, we use the non-
parametric Wilcoxon rank-sum test  with α=0.05 confidence, as our 
data were not normally distributed.

4.1 Engagement: Effect on Level Completion
One of our measures of engagement was the number of levels 
completed (see Table 3). To enable comparison of how far learners 
had progressed through the game’s instructional content, we 
subtracted the number of assessment levels  completed from the total 
number of levels completed (see Table 3).
There was a significant  difference in the number of non-assessment 
levels completed between the control  and the assessment  conditions 
(W=10851, Z=1.97, N=200, p<.05). Participants in the assessment 
condition voluntarily completed a median of 8 levels, whereas the 
control condition completed a median of 6 levels. As additional 
confirmation, we identified that within the speed study, assessment 
condition participants were more likely to continue playing the 
game past the minimum required 3 units, voluntarily completing 
significantly more levels than the control condition participants 
(W=277.5, Z=2, p<.05).
We examine more closely what  may have influenced a participant’s 

levels and 1 control condition participant and 4 assessment 
condition participants completed the entire game. Many participants 
from both groups quit the game after completing level 5 (10 players 
in the control, 15 in the assessment) and level  6 (28 players in the 
control condition, 12 players in the assessment condition). Level 6 
corresponds to the beginning of a new unit  (in this case, starting  the 
goto &  lists  unit), and Level 7 required learners to combine the use 
of keywords from the previous unit and the new unit. Next, 21 of 
the control group players  quit after level 9 (level 10 started the 
variables unit), and 11 assessment group players quit after level 13 
(level  14 began the functions & objects unit). Since participants had 
little programming knowledge and there was no difference in 
demographics, the assessments likely affected motivation when new 
concepts were being introduced (i.e. starting a new unit) and when 
they had to be combined with previously learned concepts. 

4.2 Engagement: Effect on Play Time
Our other measure of engagement was total  time played. After 
subtracting the time played in assessment levels, we found that 
participants in the engagement study’s assessment group voluntarily 
played the game for significantly  more time than participants in the 

Figure 5. Example feedback from the game assessments, 
where the left image shows the sequence of messages when 

the learners’ answer is wrong, and the right shows the 
messages when the answer is correct.

Table 2. Participant demographics.Table 2. Participant demographics.Table 2. Participant demographics.Table 2. Participant demographics.Table 2. Participant demographics.
Study 1. EngagementStudy 1. Engagement Study 2. SpeedStudy 2. Speed

control
n=100

assessment
n=100

control
n=15

assessment
n=15

gender 55 males
45 females

58 males
42 females

9 males
6 females

8 males
7 females

some college 86% 87% 93% 100%

age 18-57 years
med=27.5

18-64 years
med=26

21-40 years
med=29

19-36 years
med=26

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Table 3. Summary statistics for studies and conditions.
(“adj” = adjusted to exclude assessment levels).

Study 1. EngagementStudy 1. Engagement Study 2. SpeedStudy 2. Speed

control
n=100

assessment
n=100

control
n=15

assessment
n=15

Min. levels completed 2 2, 2 (adj) 13 19, 13 (adj)

Median levels completed 6 10, 8 (adj) 14 19.5, 14 (adj)

Max. levels completed 25 37, 25 (adj) 25 37, 25 (adj)

Min. time played 6.9 min 6.8 min 57.1 min 63.4 min

Median time played 26.3 min 41.9 min 121 min 102.2 min

Max. time played 142 min 296 min 188.6 min 198.3 min

decision to stop playing in Fig. 6. Everyone completed at least 2 



control group (W=8434.5, Z=-3.9, N=200, p<.01). As shown in Fig. 
7, the assessment condition learners voluntarily played twice as long 
as those in the control  condition, with a median overall play time of 
41.9 minutes and 26.3 minutes, respectively.
Combined with the large difference in levels completed described 
in  the previous  section, the significant  differences in play time 
suggests that assessments caused learners to continue playing even 
when reaching unit boundaries or difficult levels.

4.3 Speed: Effect on Level Completion Time
While the engagement study results show that participants  stayed 
engaged longer when given assessments, this effect could be due to 
either improved motivation, improved understanding, or a 
combination of the two. To separate these effects, our speed study 
held the incentives constant, requiring every participant  to complete 
a minimum number of levels for compensation.
Table 3 shows the descriptive statistics for the speed study results. 
We found no significant difference in the total  time participants 
played the first three units  of the game (W=222, Z=-0.4, N=30, 
n.s.), even though learners in  the assessment condition were 
required to  play an additional six levels. However, if we adjust the 
times by excluding the time spent on assessment levels, we find the 
difference in completion time was significant  (W=171, Z=-2.5, 
N=30, p<.05), with participants in  the assessment condition 
completing the three modules  twice as  fast overall, compared to 
control condition learners. This shows suggests that assessments 
helped learners master the game’s concepts faster and that adding a 
small  number of assessment  levels  essentially costs no extra time 
for participants, but leads to better performance and engagement.

4.4 Speed: Effect on Play Time & Style
To better understand  how participants used their time playing the 
game in the speed study, we examined participants’  code versions, 
code executions, and  code edit time. Descriptive statistics for all  the 
data reported in this section can be seen in Table 4.
There was no significant  difference in the overall number of code 
versions participants ran for the first three units between conditions. 
In addition, there was no significant differences in how frequently 
the participants used  the incremental execution control buttons (one 
step, one line, and stop) overall for the first three units of the game. 
However, participants  in the control  condition used the to end 
execution button significantly more than their counterparts, 
suggesting that they consumed significantly less instructional 
content, as the to end execution prevented players from reading 
Gidget’s explanations of program execution. Control condition 
participants also spent (nearly significant) more time editing their 
code (as indicated by having their mouse cursor or text caret  in the 
coding pane) than those in the assessment condition. These results 
suggest that learners in the assessment condition may have spent 
more time understanding program semantics by executing the 
program stepwise instead of reading it or executing it at full speed.

Inspecting the overall time each participant spent on each unit, we 
found a general  trend of assessment condition participants 
completing levels faster than the control group (see Table 4, median 
times for last 3  rows). This is especially true of the third  unit, which 
shows that the assessment condition participants completed the unit 
significantly faster than their control counterparts. Closer 
examination shows that participants in the assessment condition 
finished significantly faster in the first  level of the third module 
(W=164, Z=-2.8, N=30, p<.01), which introduced variables, and the 
fourth level of the third  module (W=172, Z=-2.5, N=30, p<.05), 
which required the use of all the keywords and concepts used 
throughout the unit.
Finally, we calculated how much time assessment condition 
participants spent on  assessment levels in relation to  regular levels. 
Overall, they played a median of 22 minutes across 6 assessment 
levels. Checking the ratio of assessment play time to overall play 
time, we found that participants  spent a median of 23.8% of their 
total time playing assessment levels.
We also examined how well assessment condition learners 
performed on the assessments and found that they averaged 4 out of 
6 correct. We read through participants' incorrect responses to 
identify their misconceptions. We found that the majority of 
misconceptions were the ones we expected and for which we 
created appropriate distractors (as detailed in  Section 3.3). The one 
misconception that learners  encountered that  we had not expected 
was in the first unit. In the first assessment level, 6 learners were 
unsure whether a number was required after a move command (e.g., 
“up” vs. “up	
  1”) and got the answer incorrect. However, 5 of these 6 
participants were able to correctly answer the next  assessment, 
which asked a similar question. We suspect that misconceptions 
here and in later assessment  levels were addressed and clarified 
since each assessment showed the code execution, explained why 
the participants’ chosen answer was false, and why the correct 
answer was true even if the participants’ answer choice was correct.

5. DISCUSSION
Our findings demonstrate that including explicit  multiple choice 
assessments with self-explanations in a discretionary programming 
game can significantly increase learner’s engagement and speed. In 
the case of Gidget, these effects were strong, with the learners given 
assessments completing 30% more non-assessment levels (Table 3), 
playing twice as long (Table 3), and completing levels about 20% 
faster (Fig. 7), than those not given assessments.
We also found that  speed study learners in the assessment condition 
were only getting the correct answer 66.67% of the time. However, 
they were spending an average of 24.9% of their total play time on 
the assessments, and in the free-form answer section, many 
participants gave reasonable explanations for why they thought their 
particular answer was correct (see Section 4.4). This indicated  that 
learners were trying on the assessment levels, even though they 
could proceed regardless of the outcome of their answer.

showing how many participants remain after each level.
The vertical bars indicate unit boundaries.

Figure 7: In the engagement study, players in the assessment 
group voluntarily played the game for significantly more 

time than players in the control group.

Figure 6. The engagement study’s adjusted levels completed,



There are several  possible interpretations of our results. The 
difference in performance that we saw in the speed study might  be 
because the assessment levels corrected misconceptions by 
providing the correct answers (whether or not the learner submitted 
the correct answer), which has been shown to improve performance 
in compulsory settings [8,20].
It is  also  possible that since the code in  assessment levels were not 
executable, learners had to  mentally simulate and trace the 
program’s execution, giving them practice understanding the 
program semantics unaided. Since control condition leaners’ were 
never presented levels with these constraints and were always able 
to execute their code to see what happens, they were likely more 
inclined to do that;  this  is consistent  with the finding that control 
condition learners used the “to end” execution button significantly 
more than the assessment condition learners (see Section 4.4), rather 
than taking the time to understand how the code was running. 
A third explanation  is  that since access to the reference guide and 
tooltips were disabled in assessment levels, learners in the 
assessment conditions were required to recall how the keywords and 
syntax worked using their memory. This  may have allowed them to 
understand both  the syntax and semantics  of the keywords better 
than those in the control condition, who were always presented with 
levels that allowed quick access to definitions and examples through 
the tooltips and reference guide.
Finally, since assessment levels required an explanation  of the 
answer choice, assessment condition learners had  extra opportunity 
to reflect on their selections and translate that into  text. This may 
have allowed them to identify misconceptions on their own, and 
may have also provided a means of direct comparison to the answer 
explanations Gidget gave about the incorrect and correct  answer 
choices. Allowing learners to explain their answer choices may also 
increase the positive effect of assessments [1], including improved 
understanding of the material being assessed [9].
These observations may also explain the completion of more levels 
and the longer play time by the assessment group in our engagement 
study. Those in the control condition may have found later levels too 
difficult, causing frustration and ultimately making them quit. In 
contrast, those in the assessment condition may have found these 
levels less difficult due to their experience from assessment levels, 
but sufficiently challenging to keep them engaged with the game.

These results  have implications for future work in educational 
games and other discretionary computer programming education 
resources.  In  our study, we found that our learners completed more 
levels, played the game longer, and were faster in regular levels 
when given assessments. Integrating assessments in a manner that 
flows with a game’s interactions, is  part  of the story, and framed in  a 
way that has the player helping a game character in a fun way, 
appears to keep learners  engaged, even when these tasks are still 
obviously a test. Codecademy could integrate assessments that are 
tightly coupled with the style and content of the site. Not only can  it 
improve students’  learning, but it  can also be used as a resource to 
track students’  progress and make adjusting changes or suggestions 
to their curricula. Our findings may be less generalizable to large-
scale resources like massively open online courses (MOOCs) 
however, which are still  largely  similar to traditional classroom 
settings, where there are lecture/content resources, and assignments. 
However, moving MOOCs’  content to more interactive instruction 
and assignments may open the opportunity to integrate assessments 
in a manner similar to the study we have described.

5.1 Threats to Validity
Our study has several limitations that limit its generalizability. First, 
MTurk allows participants to self-select into HITs given that they 
meet certain qualifications. Our HIT only required that participants 
were living in the USA and had no programming experience. 
Additionally, filtering HITs for certain payouts  or tags could have 
affected participant recruitment. These limitations introduce a 
sampling bias, which may limit  the generalizability of our results to 
the particular populations found on MTurk.
There may also be limitations to the generalizability of the game 
itself. We focus  on a specific type of programming language and a 
specific framing of programming. These may have interacted with 
assessments in a way that may not occur in other settings. 
Finally, though small, there was an economic incentive for 
participants to participate in  the study. We tried  to minimize this 
effect as much as possible, and the feedback from of our pilot study 
participants and the majority of MTurk participants suggests that 
people would be willing to play the game without these economic 
incentives, especially if they were allowed to quit at any time.

6. CONCLUSIONS & FUTURE WORK
We investigated whether providing assessments to self-directed, 
independent learners playing a game designed to  teach 
programming would increase a learner’s engagement and speed in 
the game. By adding assessments to the end of each unit—a 
collection of levels designed to teach a set  of programming 
keywords or concepts—we found that learners who were given 
assessment levels complete more game levels and play the game 
longer and that they completed non-assessment levels faster.
These findings raise many questions for future work. How 
important was it  that the assessments be tightly integrated into the 
game mechanics, and what is the effect of other instructional 
content on engagement and speed, such as worked examples  [37] 
and adaptions of peer instruction [31]?  How do these effects play 
out in other forms of discretionary computing education such as 
MOOCs, online tutorials, and constructionist approaches to  learning 
programming?  With the rising interest in learning to program, and 
the proliferation of resources  to do so, we believe that knowledge 
about the interaction between the design of these resources and 
engagement and learning  will be essential for learner retention and 
effective pedagogy.
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control
n=15

assessment
n=15

significance test
N=30

significance test
N=30

code 
versions

58-223
med=75

50-124
med=71 W=204.5, Z=-1.1 n.s.

“one step” 
clicks

0-2901
med=268

1-1883
med=256 W=243, Z=0.4 n.s.

“one line” 
clicks

8-426
med=90

0-357
med=40 W=243, Z=0.5 n.s.

“to end” 
clicks

11-73
med=31

4-59
med=19 W=166.5, Z=-2.7 p<.01

“stop”
clicks

0-112
med=13

1-51
med=21 W=241.5, Z=0.35 n.s.

focus
time

29.1-177.2sec
med=61.7 

22.7-105.2sec
med=39.6 W=185, Z=-1.9 p=.051

unit 1 
completion

10.8-57.2min
med=22

7.6-46.9min
med=24.2 W=227, Z=-0.02 n.s.

unit 2 
completion

12.1-70.2min
med=37.3

20.1-73.9min
med=33.5 W=210, Z=-0.9 n.s.

unit 3 
completion

8-108min
med=40.8

6.4-110.4min
med=19.8min W=176, Z=-2.3 p<.05
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