
1

Investigating the Role of Purposeful Goals on 
Novices' Engagement in a Programming Game 

Michael J. Lee and Amy J. Ko 
The Information School | DUB Group 

University of Washington 
Seattle, Washington, USA 
{mjslee, ajko}@uw.edu 

Abstract — Engagement is a necessary condition for learning, 
especially for challenging topics such as computer programming. 
Previous studies have shown that changes to the presentation of 
educational game elements can significantly affect learners’ 
engagement to continue playing. We hypothesized that changing 
the presentation of the data referred to in a game’s goals would 
influence the purposefulness of the goals, thereby affecting 
players’ motivation to achieve them. To test this, we designed a 
game called Gidget, where the eponymous robot protagonist 
needs assistance to correct its code to complete its missions. In a 
three condition controlled experiment, we manipulated the 
presentation of the game’s data elements and goals, and assessed 
the impact on several measures of player engagement. We tested 
our game with 121 self-described novice programmers recruited 
on Amazon’s Mechanical Turk and found that, when given the 
option to quit at any time, those in the condition using vertebrate 
data elements completed twice as many levels as those using 
abstract data elements. Moreover, the participants using the 
vertebrate and invertebrate elements spent significantly more 
time than those using the abstract data elements playing the 
game overall. Finally, although players across all three conditions 
spent similar amounts of time interacting with the game’s user 
interface, editing code, and completing and attempting levels, we 
found that those in the abstract condition were much more likely 
to quit, especially on difficult levels. These findings suggest that 
the presentation of game elements can strongly affect the 
purposefulness of goals, which may play a significant role in 
keeping self-guided learners engaged in learning tasks. 
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I. INTRODUCTION 
Engagement is a necessary condition for learning [12], 

especially for challenging topics such as computer 
programming [6]. One promising way to both engage learners 
and ensure learning are educational games [12,31]. For 
example, in our prior work, we have explored a debugging 
game called Gidget, in which the player works with a damaged 
robot to diagnose and correct its faulty programs, helping it 
complete its mission objectives [22]. Games such as these can 
provide immediate, interactive feedback that builds learner 
confidence, allowing them to assess themselves and identify 
skills they need to develop [32]. Games like Gidget are similar 
to the collaboration between learner and tutor, where the tutor 
(i.e. the game), provides personalized feedback to help the 
learner complete their objective(s). As with a human tutor, 
effective games can be engaging by providing players with 
clear objectives and the skills needed to achieve them [12]. 

Such engagement may only occur, however, when 
objectives are meaningful (i.e. have a purpose) to the learner. 
Although these effects have been examined in formal 
educational settings [21,25], much less is known about their 
effects in informal contexts, especially in the space of 
educational games. For example, in studies of attrition in CS1 
courses, one of the most common factors behind dropouts were 
that students did not feel that the programs they were writing 
solved meaningful problems [25]. This trend was verified by 
Layman et al., who argue for more meaningful assignments 
after finding that 41% of 200 surveyed CS1 course projects had 
no practical context (e.g. sorting a list of meaningless numbers) 
[21]. In our prior work using Gidget, we investigated this effect 
in the context of games, attempting to manipulate the extent to 
which the player believed they were helping Gidget, comparing 
a robot with a face that used personal pronouns such as “I” and 
“we” to one that had no face and used conventional error 
messages. We found that players who worked with the 
personified robot were significantly more likely to report 
wanting to help it and completed twice as many levels in a 
similar amount of time as the other group [22]. 

Whereas in our previous study we investigated the effect of 
the visual presentation of the program interpreter, in the present 
study we investigate the effect of game goals, manipulated by 
the presentation of data elements. Recent work has 
demonstrated that humans have evolved to empathize with 
animals [4], suggesting that players may attribute more purpose 
in the goals working with animate data objects, particularly 
vertebrates [2]. In Gidget programs, data are the objects that the 
robot scans, analyzes, and moves, such as those in Table 1, and 
these objects are directly tied to the goals that the player is 
trying to accomplish. Goals in the game include transferring 
spilled chemicals into containers, checking attributes of 
objects, and moving animals to safety. We hypothesized that 
changing the presentation of the data referred to in these goals 

TABLE I. CONDITIONS, GOALS, AND IMAGES OF THE FIRST LEVEL 
Condition Goal (Level 1) Respective Game Images

Abstract block on bin

Invertebrate beetle on jar

Vertebrate kitten on basket
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would influence the purposefulness of goals, thereby affecting 
players’ motivation to achieve them, especially as goals 
become increasingly difficult to accomplish.  

Our experiment, which involved 121 rank novice 
programmers, asked participants to play the game (Fig. 1) until 
they wished to quit, enabling us to measure engagement as play 
time and the number of levels completed. To manipulate the 
purposefulness of the goals, we designed three versions of the 
game involving the three different kinds of objects shown in 
Table 1: abstract, invertebrate, and vertebrate. We found that 
those in the condition interacting with vertebrate data elements 
completed significantly more levels than those in the other two 
groups in a similar amount of time. In addition, although we 
found that the participants using vertebrates played the game 
significantly more overall, there were no significant differences 
in play time on individual, attempted levels across conditions. 

II. RELATED WORK 
Educators use engagement to improve learning. According 

to engagement theory, engaged students learn at high levels, 
better grasp what they learn, and retain that knowledge [18]. 
Experts agree that increasing student engagement in 
educational topics is key to success [8,14]. Since engagement 
in learning activities is connected with tasks perceived to be 
meaningful [18], it is closely related to motivation. 

There are several studies demonstrating that working 
towards meaningful goals positively affects engagement in 
gaming and learning contexts. Bowman encourages learners to 
play an active role in their engagement by having them pursue 
goals they find personally meaningful [3]. Similarly, Malone 

argues that a key element for creating enjoyable educational 
games is to provide clear goals that students find meaningful 
[23]. Vroom reported that the valence of an activity (or the 
attractiveness of outcomes) plays a major role in effort 
expenditure [37]. Meaningful goals have been found to be 
particularly important for women [25], minorities [11], and 
millennials (those born after 1982, including men) [33]. 
However, Layman et al. find that current CS1 courses lack 
meaningful projects [21]. Our work extends these studies done 
in formal learning settings, exploring how the representation of 
particular game elements affects engagement in achieving 
game goals in an informal learning context. 

Other works support the constructionist approach to 
learning, supporting children’s engagement by having them 
work on relatable and personally meaningful projects [34]. 
Kelleher et al. [19] were one of the first to demonstrate that 
opportunities and affordances for storytelling can significantly 
improve learners’ motivation to program by making projects 
more personally relevant. Several systems offer varying 
instantiations of objects to reinforce the motivating nature of 
storytelling. For example, MOOSE Crossing invites learners to 
create characters and spaces in a virtual, multi-user text-based 
world [5]; more recently, work by Ryokai et al. had children 
learn programming by partnering with a physical robot that acts 
out stories through personal drawings [36]. Storytelling Alice 
[19] and Scratch [24] also enabled learners to tell and share 
stories. Our work follows these traditions, but provides learners 
with the story, allowing them to contribute to its progress. 

Concrete representations may provide context for making 
goals more purposeful. For example, an abstract task such as, 

 
Figure 1. Gidget (showing the vertebrate condition), in which players help a damaged robot fix its broken programs. The goal of this level is to help Gidget fix the 

broken program to clean and secure the area by moving the oil to the bucket, and the kitten to the basket. 
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“sort this list of integers” [21] does not convey the same 
meaning as “triage these injured patients.” This strategy of 
using concrete representations to explain abstract concepts is a 
common pedagogical practice and supported by large 
organizations such as the National Council of Teachers of 
Mathematics (in this case, using concrete representations to 
explain abstract concepts) [16]. However, evaluation of the 
effectiveness of this practice on learning is scarce and largely 
anecdotal [16], leading to many conflicting viewpoints within 
the education community. For example, Ainsworth et al. [1] 
found that elementary students who were shown concrete 
visual aids outperformed peers who were not shown the visual 
aids in a math activity. Conversely, other studies in 
mathematics education found concrete instantiations introduce 
irrelevant distractors that hinder students’ ability to apply their 
knowledge to similar problems [17]. Still others support and 
demonstrate the effectiveness of a combined approach such as 
concreteness “fading,” where students are first shown a 
concrete example and subsequent examples become more 
abstract [13]. All these strategies, which affect learning, may 
have direct implications on student engagement [27]. Our work 
extends these studies done in formal learning settings, 
exploring how concrete or abstract instantiations of data 
elements affect engagement in achieving game goals in an 
informal learning context. 

III. METHOD 
The aim of our study was to investigate how the 

purposefulness of goals, manipulated by the visual 
representation of data elements and their labeling, affects 
learners’ voluntary engagement. To do this, we designed 
Gidget, shown in Fig. 1. The game asked learners to help a 
damaged robot fix its faulty programs in order to accomplish its 
missions. Our study had three conditions: the control condition 
involved data elements that were abstract and inanimate (Table 
1). The two experimental conditions involved data elements 
that were concrete and animate; in one condition these were 
vertebrates and in the other they were invertebrates (Table 1). 
We hypothesized there would be a difference in levels 
completed and time spent on levels in the three conditions, with 
a preference for working with vertebrates. The study was a 
between-subjects design with 41 participants in the vertebrate 
condition, and 40 each in the invertebrate and abstract 
conditions. Participants were recruited on Amazon.com’s 
Mechanical Turk and offered $0.40 for completing at least one 
level, and an additional $0.10 for every level completed 
onwards. The number of levels completed was displayed in the 
upper right corner of the interface, along with a button giving 
the participants the option to quit at any time (Fig. 1). The key 
dependent variable in our study was engagement, which we 
operationalized as the number of levels completed, the time 
spent on each level, and the use of different UI elements such 
as the code editor. In this section, we describe the game, the 
experimental manipulations, our dependent variables, and our 
experimental procedure. 

A. The Game 
Our game, called Gidget (shown in Fig. 1), is a web-based, 

HTML5 application. Learners are guided through a sequence of 
levels that teach the design and analysis of basic algorithms in 
a simple imperative language designed specifically for the 
game. A simple story motivates the game: a small robot capable 
of identifying and solving problems with programs has been 

deployed to clean up the area and shut down a factory that has 
gone awry. Unfortunately, the robot was damaged during 
transportation, and now struggles to complete its missions, 
generating programs that almost accomplish its missions, but 
not quite. It is up to the learner to help the robot by figuring out 
and fixing its problematic code. In this sense, the learner and 
the robot are a team, working together to complete levels and 
ultimately shut down the hazardous factory. 

The primary activity in the game is to learn how to 
communicate with the robot via commands to help it 
accomplish a series of goals. The levels, goals, language, and 
user interface (UI), however, were designed to teach specific 
aspects of algorithm design. The first 9 levels focus on teaching 
the 7 basic commands in the robot’s syntax grammar (Table 2) 
as well as variations on how these commands can be written. 
These levels each contain some syntax error that learners must 
understand and correct by inspecting the program, executing it, 
and optionally reading Gidget’s explanations of his actions at 
each step in the code (e.g. Fig. 1.4). The subsequent 9 levels 
teach design patterns for composing these commands to 
achieve more powerful behaviors, each containing some 
semantic error. Each level includes one or more goals (Fig. 
1.2), which are executable expressions that must all be true 
after program execution to proceed to the next level. Each goal 
is on a single line predicate, with corresponding references to 
the data elements in the world (e.g., Fig. 1.2 and 1.6: kitten and 
bucket). 

Table 2 explains the robot’s commands. Learners had 
access to a similar syntax reference, but with simpler 
explanations, through the ? button at the top right of the editor 
(Fig. 1.1). Each of the 7 commands could be followed by a ‘,’ 
and subsequent command, allowing the robot to iterate over a 
set of things with a given name. For example, if there were 
multiple kittens in Fig. 1, the command goto kitten, grab it would 
iteratively go to each kitten, grab the kitten, and then go to the 
next kitten. The current object in a set is pushed onto the focus 
stack (Fig. 1.5); it always resolves to the object at the top of 
this stack. The results stack tracks matching names for each 

TABLE II. GIDGET COMMAND SYNTAX AND SEMANTICS 

 scan thing 
Enables Gidget to goto all things with name thing. Scanned things are 
added to the set named scanned in Gidget’s memory. 

 goto thing1 [avoid thing2] 
Moves Gidget to all of the things matching the name thing1, one square at 
a time If a thing to avoid is given, for each step that Gidget takes, he 
attempts to find a path that stays at least 1 square away from things with 
the name thing2. 

 analyze thing 
Enables Gidget to ask all things with name thing to perform an action. 
Analyzed things are added to the set named analyzed in Gidget’s memory. 

 ask thing to action thing * 
Causes thing to perform action, if action is defined. Zero or more things are 
passed as arguments. Gidget’s execution is suspended until the thing 
asked has completed requested action. 

 grab thing 
Adds all things with name thing to the set named grabbed in Gidget’s 
memory, removing them from the grid and constraining their location to 
Gidget’s location. 

 drop thing 
Removes all things with name thing in that were previously grabbed from 
the set grabbed set. 

 if thing is[n't] aspect, command 
For each thing with name thing that has been analyzed, execute the 
specified command if that thing contains an aspect of name aspect.
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command’s thing query. Each of these data structure views are 
updated after each step in the program, providing learners with 
a visualization of Gidget’s state. 

In the game, Gidget programs are primarily capable of 
findings things in the world (Fig. 1.6), going to them, checking 
their properties, and moving them. In some cases, objects have 
their own abilities, which can be invoked like a function. After 
each execution step, the effect of these commands is shown in 
the memory pane (Fig. 1.5) and explained by the robot (Fig. 
1.4), teaching the semantics of each command to players. Each 
step costs 1 unit of energy (above Fig. 1.5), requiring learners’ 
to carefully consider how to write their code to complete each 
level within the allotted number of energy units.  

The robot is detailed in its interpretation of each command, 
explaining what action it has taken after each step (Fig. 1.4) 
and visualizing changes to the data structures it maintains in 
memory (Fig. 1.5). When it arrives at an unrecognized or 
incomplete command, it explicitly highlights the missing 
information and explains what interpretation it is going to make 
before proceeding (e.g. Fig. 2). Upon execution of a line with 
parsing errors, the system also opens up a syntax guide 
available from the ? in the editor (Fig. 1.1), highlighting the 
rule that the robot guessed was being used. Finally, the robot 
was given facial expressions (neutral, happy, and sad) shown 
upon error states and goal completions. It referred to itself and 
the player using personal pronouns in its feedback such as “I 
don’t know what this is...” and “I never could have done it without 
you!” This was based on research showing that personified 
feedback by an interpreter with agency significantly increased 
learners’ engagement [22]. 

To aid the players with debugging, the game includes four 
execution controls for the code: one step, one line, all steps, 
and to end (Fig. 1.3). The one step button evaluates one 
compiled instruction in the code, as a breakpoint debugger 
does, but also displays text describing the execution of the step 
(Fig. 2). The one line button evaluates all steps contained on 
one line of the code, jumping to the final output of that line 
immediately. The all steps button evaluates the entire program 
and the goals in one button press, animating each step. The to 
end button does the same as all steps, but only shows the 
program end state, without animating intermediate steps.  

The game was compatible on MacOS X, Windows 7, and 
Ubuntu Linux 10, using Apple Safari 5, Mozilla Firefox 5, and 
Google Chrome 10. (We were unable to support Microsoft 
Internet Explorer 9 because it lacked the contentEditable 
attribute, which was used to implement the editor). This may 
have affected our participant recruiting, since at the time of the 
study, nearly half of worldwide web traffic was from lesser 
versions of Internet Explorer [30]. 

B. The Three Level Conditions 
The independent variables we manipulated in our 

experiment were the labels and visual appearance (Table 3) of 
the objects referred to in the level goals (Fig. 1.2). In the 
abstract condition, the data elements the player and robot 
interacted with were designed to be inanimate, abstract objects. 
This condition was intended to diminish the purposefulness of 
the goals, separating them from the context of the story. The 
items in the abstract condition were all blocks of various colors 
with abstract signs, such as the arrow in Table 3. In contrast, 
both of the experimental conditions’ data elements were 
designed to be specific, animate, concrete objects. In the 
vertebrate condition, the data elements included cats, birds, 
dogs, kittens, puppies, piglets, and rats. In the invertebrate 
condition, the data elements included beetles, flies, ladybugs, 
bees, termites, butterflies, and spiders. These conditions were 
intended to increase the purposefulness of the goals, tying them 
to the context of the story. Our hypothesis, based on prior work 
showing that humans empathize and attribute more positive 
attitudes towards vertebrates [2,4], was that players would 
ascribe more purpose in saving vertebrates (and perhaps 
invertebrates) than abstract objects, and therefore complete 
more levels. 

Many of the level goals required Gidget to move certain 
data elements to the position of another, usually a container like 
those in the first column of Table 3. The visual representation 
and names of these data elements were also different in each 
condition, reflecting the overall theme of its group’s other data 
elements. There were two distinct containers in each condition, 
including bin/pod, basket/bucket, and jar/bucket for the 
abstract, vertebrate, and invertebrate conditions, respectively.  

C. Recruitment 
The population we focused on were rank novice 

programmers, defined as individuals who self-reported that 
they had never written a computer program. To recruit these 
individuals, we used Amazon.com’s Mechanical Turk (MTurk), 
an online marketplace where individuals can receive micro-
payments for doing small tasks called Human Intelligence 
Tasks (HITs). Since workers are sampled from all over the 
globe, MTurk studies can generalize to more varied 
populations than samples from limited geographic diversity 
[20]. However, due to the nature of the low monetary 
compensation and anonymity of the workers, careful 
consideration has to be taken to ensure the quality of workers’ 
submissions [10,20]. To address this, we required that 
participants complete at least one level to receive credit for the 
HIT, ensuring that they actually interacted with Gidget, the 
code, goals, and the data elements before quitting. 

TABLE III. A SELECTION OF DATA ELEMENTS FROM THE 3 CONDITIONS 

(inanimate)
abstract

bin block block tile

(animate & 
concrete)

invertebrate
jar beetle fly ladybug

(animate & 
concrete)

vertebrate
basket kitten bird dog

 
Figure 2. Code (left) and Gidget’s response (right) describing the execution 

step using personal pronouns to increase agency. 
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D. Pricing and Validation 
Our pricing model and validation method was carried over 

from a previous study [22]. Since our game had a total of 18 
levels, we decided to compensate our participants with a base 
rate and a nominal bonus payment for each level they 
completed. Participants were instructed that only the first level 
was required to receive compensation, and that subsequent 
levels were completely voluntary. Previous studies have found 
that higher payments do not necessarily equate to better results 
[15], so we calibrated our payments to established market 
prices. To do this, we observed MTurk HITs tagged “game” for 
14 days. We filtered these HITs to include only those that had 
an actual gameplay element as the main component (as 
opposed to tasks such as writing reviews for games). From 
these HITs, we constructed a list of ‘reward’ and ‘time allotted’ 
values, along with any explicit bonus payments mentioned. Our 
goal was to set a base reward that was high enough to attract 
participants, but also as low as possible to minimize 
participants’ sense of obligation to spend time on our HIT. 
Likewise, we wanted our bonus payments to have a minimal 
effect on a worker’s decision to continue playing the game. 

Based on our data, we determined our optimal base reward 
as $0.30 for starting the HIT, and an additional $0.10 for each 
level completed. Because we required that players complete at 
least one level to get paid, the minimum compensation was 
$0.40. Participants were not informed of the total number of 
levels to eliminate that factor from their decision to continue 
playing the game. In addition, we set the ceiling for submission 
time to 3 hours so that potential participants could gauge the 
difficulty of the HIT compared to other HITs. Finally, we 
deliberately avoided mentioning programming in the HIT 
description to prevent people from self-selecting out because of 
its association with programming. However, since the HIT 
description included the words “game” and “robot,” we may 
have introduced some selection bias related to these topics. 

To further validate our pricing model and detect defects and 
usability problems in the game, we conducted a pilot test on 
MTurk with 29 participants. The pilot study results verified that 
participants were willing to complete levels and that the system 
functioned as expected. Based on the information we received, 
we fixed a few minor data element name inconsistencies. 

E. The Participants 
Because we deliberately chose not to mention programming 

in our HIT description, we could not exclude those with prior 
programming experience from participating. Therefore, we 
recruited a large sample of 251 participants from MTurk. Of 
these, 121 met our criteria for being novice programmers, 
which included all participants who responded “never” to all of 
the following statements: 1) “taken a programming course,” 2) 
“written a computer program,” and 3) “contributed code 
towards the development of a computer program.” 

Participants were distributed proportionally among our 
three conditions by demographics, with no statistically 
significant differences in gender (χ2(2,N=121)= 1.1,n.s.), age 
(χ2(2,N=121)= 3.6,n.s.), level of education (χ2(14,N=121)= 
4.0,n.s.), or country of residence (χ2(32,N=121)= 30.7,n.s.). 
The median age was 26, ranging from 18 to 66 years old. 
Though we expected there to be a gender sampling bias 
because the HIT was labeled as a game, our sample included 63 
females and 58 males, which is consistent with other MTurk 

findings that females are major contributors on the site [35]. 
Participants were primarily from the US (61.6%), and India 
(14%). The remaining were from the UK (5.6%), Canada 
(3.3%), and 13 other countries (16%). Consistent with studies 
of mTurk demographics [10,20], our sample was well-
educated, reporting that their highest level of education 
achieved was: less than high school (1.7%), high school 
(17.4%), some college (21.5%), an associates degree (8.3%), a 
bachelor’s degree (38%), a masters degree (8.36%), a 
professional degree (1.7%), or a doctorate (3.3%). 

F. Procedure & Dependant Measures 
On game load, each participant was randomly assigned one 

of three conditions: abstract, vertebrate, or invertebrate. This 
information, along with each player’s current game state was 
logged on the client-side to ensure participants would never be 
exposed to another condition, even if they refreshed their 
browser. Once a participant chose to quit, they were given a 
post-survey asking about gender, age, country, education, and 
programming experience. Finally, the survey asked participants 
to select their level of agreement to the following statements on 
a 5-level Likert scale to get a sense of participants‘ attitude 
towards game elements: 1) “I enjoyed playing the game,” 2) “I 
would recommend this game to a friend wanting to learn 
programing,” 3) “I wanted to help Gidget succeed,” and 4) “I 
enjoyed interacting with the objects in Gidget’s world.” 

After submitting their responses, the participant received a 
unique code to receive payment for their submission. In 
addition to the survey responses, we collected a time-stamped 
activity log for each level a participant attempted including: (1) 
Each press of any of the four execution buttons and a copy of 
the code at the time of execution; (2) Level start & level end: 
events marking when a player started and completed or quit a 
level; (3) Idle start & idle stop: events marking when a player 
provided no mouse or keyboard input for 30 seconds or more, 
and where in the UI panes (Fig. 1) the idle time occurred, 
including the syntax help pane. Events were also recorded 
marking resumption in activity; (4) Edit time (edit in & edit out): 
events marking when the player clicked inside the code pane 
(Fig. 1.1) to edit code or clicked elsewhere to leave the editing 
pane; (5) Pane Time (time in & time out): timestamps of mouse 
cursor movement over or out of the seven major UI panes. 

From these, we calculated the following dependent 
measures for each participant: (1) Time on level: how long 
individual participant was actively engaged with the code and 
interface of each level overall, adjusted by subtracting idle time. 
This was calculated for each level by first taking the difference 
of level end and level start, then subtracting idle time for that 
level; (2) Time overall: how long each participant played the 
game overall, adjusted by subtracting idle time. This was 
calculated by summing up the all of the time on level data per 
participant and subtracting the sum of their idle time. 

Finally, we used each participants’ number of levels 
completed, time to complete or quit a level, and logs of 
execution buttons and UI pane activity, to compute dependent 
measures on participants’ activity proportional to overall time 
spent on levels. 

IV. RESULTS 
Table 4 presents the results for both novice and experienced 

programmers. We used non-parametric tests, as our dependent 



6

measures were not normally distributed. Our level of 
confidence was set at α=0.05. 

A. Vertebrate Condition Players Complete More Levels 
Since we required that all participants complete the first 

level to receive payment, the minimum number of levels 
completed was one. The maximum number of levels completed 
in the abstract, invertebrate, and vertebrate conditions were 9, 
16, and 18, respectively. There was a significant difference in 
the number of levels participants completed between the three 
conditions (χ2(2,N=121)=7.3,p<.05). Further post-hoc analysis 
with a Bonferroni correction shows that the significantly 
different pair was the abstract vs. vertebrate conditions 
(W=1380.5,Z=-2.5,p<.01), with the vertebrate group 
completing more levels. Comparison of the abstract vs. 
invertebrate (W=1669.5,Z=0.5,n.s.) and vertebrate vs. 
invertebrate (W=1427.5,Z=-2.0,n.s.) conditions showed no 
differences. 

Investigating this difference further, the distribution of 
percentage of participants remaining (Fig. 3) shows that 
approximately 25% of the participants from each group quit the 
game after completing only the first level. Next, many 
participants quit on level 4, which required them to use the 
command learned in the previous level with a new command to 
complete the goal. Finally, participants quit again in large 
numbers on level 6, which introduced conditional statements. 
This is consistent with others’ findings that novice 
programmers have difficulty with conditional logic [9,26]. 
Here, the abstract condition had the most drastic drop with 90% 
of its participants quitting, followed by the invertebrate 
condition’s drop of 77.5% its participants, and finally, the 
vertebrate condition with 67.5% of its participants quitting. All 
of the abstract condition’s participants quit by level 10, whereas 
both animate, concrete conditions had a few participants 
complete or nearly complete all the levels. 

Since all participants were novice programmers with no 
statistical difference in demographics, these results suggest that 
interacting with goals that use concrete data elements had a 
significant positive effect on participants’ engagement with the 
game, particularly on levels introducing difficult concepts. 

B. Both Animate Conditions Players Play Longer 
There was a wide range of overall play times for the 

abstract, invertebrate, and vertebrate conditions (4.9 min to 1.3 
hrs, 8.3 min to 1.9 hrs, and 6.9 min to 2.8 hrs, respectively). 
There was a significant difference in the length of time 
participants played the game overall by condition 
(χ2(2,N=121)=10.2,p<0.01). A post-hoc analysis with 

Bonferonni correction reveals that two conditional pairs were 
s i g n i f i c a n t l y d i f f e r e n t : a b s t r a c t v s . v e r t e b r a t e 
(W=1330,Z=-2.9,p<.016) and abstract vs. invertebrate 
(W=1889,Z=2.6,p<.016). In both cases, the participants in the 
abstract condition spent significantly less time playing the 
game than the other conditions. Play time between the animate, 
concrete conditions did not differ (W=1620,Z=-0.2,n.s.). 

Next, we investigated how quickly players completed levels 
by comparing participants’ ratio of total play time to number of 
levels p layed, f inding no s ignif icant d i fference 
(χ2(2,N=121)=3.7,n.s.). These findings are supported by Fig. 4, 
which shows that the median times to complete the first 5 
levels are comparable across conditions. The sporadic time 
shown in the remainder of the figure may be attributed to the 
individual differences of the smaller number of participants 
completing later levels. 

C. No Significant Differences in Code Execution Strategies 
One possible explanation for the differences in levels 

completed was a different use of the game UI. Therefore, we 
investigated the proportion of execution button presses per unit 
time on completed levels, for each of the four execution 
buttons, finding no significant differences in usage (one step: 
(χ2(2, N=121)=2.2,n.s.), one line: (χ2(2,N=121)=0.5 n.s.), all 
steps: (χ2(2,N=121)=1.6, n.s.), to end: (χ2(2,N=121)=0.1 n.s.)). 
These results show that the differences in success were likely 
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Figure 4. Median times to complete each level, by condition. The times 
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By level 10, all in the abstract condition had quit.

TABLE IV. SUMMARY OF NON-PARAMETRIC TESTS 

Novice 
(χ2: df=2, N=121)

Experienced 
(χ2: df=2, N=130) 

# of levels completed (χ2 =7.3, p<.05) (χ2 =4.3, n.s.)

Time played overall (χ2 =10.2, p<.01) (χ2 =3.5, n.s.)
Ratio of time played to 

levels played (χ2 =3.7, n.s.) (χ2 =2.9, n.s.)

E
x
e
c

One Step (χ2 =2.2, n.s.) (χ2 =0.8, n.s.)
One Line (χ2 =0.5, n.s.) (χ2 =0.7, n.s.)
All Lines (χ2 =1.6, n.s.) (χ2 =2.6, n.s.)
To End (χ2 =0.1, n.s.) (χ2 =0.5, n.s.)

U
I

P
a
n
e
s

Code (χ2 =2.5, n.s.) (χ2 =0.9, n.s.)
Goal (χ2 =4.0, n.s.) (χ2 =0.9, n.s.)

Execution (χ2 =3.7, n.s.) (χ2 =2.7, n.s.)
Feedback (χ2 =0.3, n.s.) (χ2 =2.8, n.s.)

World (χ2 =4.3, n.s.) (χ2 =2.1, n.s.)
Memory (χ2 =1.0, n.s.) (χ2 =0.4, n.s.)

Cheat Sheet (χ2 =5.8, n.s.) (χ2 =3.4, n.s.)
Edit Time (χ2 =0.9, n.s.) (χ2 =1.7, n.s.)
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not due to one condition executing the program more 
frequently or stepping through it differently. 

D. No Differences in User Interface Usage 
Another possible explanation for the disparity in levels 

completed was differences in how participants used the various 
panels in the UI. We examined the proportion of interface pane 
usage to overall time on levels played, again finding no 
significant differences among conditions (Code: (χ2(2,N=121) 
=2.5, n.s.), (Goals: (χ2(2,N=121) =4.0, n.s.)) Execution: 
(χ2(2,N=121) = 3.7, n.s.), Feedback: (χ2(2,N=121) = 0.3, n.s.), 
World: (χ2(2,N=121) =4.3, n.s.), Memory: (χ2(2, N=121) =1.0, 
n.s.), CheatSheet: (χ2(2,N=121) =5.8, n.s.)). We also tested the 
proportion of time spent editing code (computed from the logs) 
to overall time on levels and found no significant differences 
among conditions (χ2(2,N=121) =0.9, n.s.). 

All of these results suggest that the differences in success 
and play time were not due to different in the proportion of 
time players used each of the user interfaces in the game. 

E. No Significant Differences in Attitudes 
Although there was a trend in survey responses indicating a 

positive experience playing the game, there was no significant 
difference in participants’ self-reported level of enjoyment 
comparing the three conditions (χ2(8,N=121)=5.8,n.s.) or 
whether they would recommend the game to a friend wanting 
to learn programming (χ2(8,N=121)=4.1,n.s.). Similarly, there 
was a positive trend in responses across conditions, but no 
significant difference in participants’ self-reported desire to 
help Gidget succeed (χ2(8,N=121)=11.6,n.s.) or whether they 
enjoyed working with their data elements (χ2(8, 
N=121)=5.5,n.s.). Here, our findings are similar to those by 
Nass et al., where participants did not believe the computer 
affected their performance, even when it did [29]. 

F. No Significant Effects for Experienced Programmers 
Whereas the rank novices showed significant differences in 

level completion and play time, players with self-reported 
programming experience showed no differences in any of the 
previously reported analyses (Table 4) such as play time or 
levels completed. This group consisted of 130 participants with 
38, 47, and 45 in the abstract, invertebrate, and vertebrate 
conditions, respectively. These were the participants who 
reported in the survey that they have: 1) taken a programming 
course, 2) written a computer program, or 3) contributed code 
towards the development of a computer program.  

V. DISCUSSION 
Our findings show that goals involving animate rather than 

inanimate objects significantly increases learners’ engagement 
in a programming game, leading rank novices to play 
significantly longer and complete significantly more levels. 
Moreover, we showed that these effects were not due to 
differences in how players executed the programs, how they 
used the game UI, how long they attempted each level, or how 
much time they spent editing their code. This manipulation had 
no effect, however, on players with programming experience. 

There are several possible interpretations of these results. 
One possibility is that when reaching a difficult level, players 
saw a greater purpose in saving an animal or insect than in 
moving a block, and therefore kept playing when goals were to 
help animate objects. Prior research on computer science 

recruitment shows that there are gender specific effects in 
motivation to enroll, specifically related to the reasons for 
computing (females are enticed when they see how computing 
can be used for a purpose) [25]. The non-effect for experienced 
programmers might be attributed to their familiarity to the 
concepts being taught, meaning that the effect of the goals was 
overcome by the lack of challenge. 

Another potential explanation is that participants paid 
closer attention to code involving animate objects and therefore 
understood the semantics of the programming language better, 
making the difficult levels easier. This idea is supported by 
recent work in neuroscience showing that human brains attend 
preferentially to images of animate over inanimate objects [28]. 
Additionally, or alternatively, participants in the animate 
conditions may have been better able to comprehend the 
robot’s explanations of its actions because the messages 
involved concrete, animate objects that had meaning in the 
context of the game. Experienced programmers may have been 
less interested in the robot’s explanations; instead, they likely 
used their prior knowledge of programming syntax and 
semantics to complete goals, minimizing their attention 
towards the different data elements’ icons and labels. 

Because there were no distinguishable differences in play 
time between levels across conditions, it is also possible that 
participants had comparable success in learning, but different 
amounts of retention. In addition to playing a role in learning-
related retention [7], the amygdala has been shown to prefer 
images of animals over other objects [28]; therefore, players 
may simply have remembered more about the meaning of 
commands from previous levels when the levels involved 
animals. The non-effect for experienced programmers can 
likely be attributed to their familiarity of memorizing and using 
commands to write computer code.  

A. Implications 
Our results have many potential implications on our 

understanding of online learning, the role of game elements in 
engagement, and computing education pedagogy. Our results 
show that purposeful goals may play a significant role in 
engagement in the context of self-guided, discretionary, 
educational games. These findings support prior works done in 
classroom settings [19,25], and broadens them to informal 
learning settings. Future work should investigate the effects of 
these factors on learning, both in formal and informal contexts. 

In addition, this study demonstrated that small changes to 
the game elements can have a significant effect on engagement 
in educational games. Here, we had large effect sizes, with 
double the overall play time and level completion, as was the 
case in our prior study [22]. This suggests that in the growing 
amount of work in educational games research, game designers 
should be doing more on low-level factors that are predicted to 
be influential by research in learning, memory, and attention. 

B. Threats to Validity 
Our results have a number of limitations that may restrict 

their generalizability and validity. First, MTurk allows 
participants to self-select into HITs. Our HIT did not require 
any special qualifications and mentioned games and robots, 
both of which may have led us to recruit participants with 
interests or experience with both. Although we tried to account 
for factors that would affect the HIT’s listing on Amazon’s HIT 
page, those who filtered for higher-paying HITs would be less 
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likely to find our HIT, whereas those filtering for a tag labeled 
“game” would be more likely to find our HIT. 

The game was accessible by computer, connected to the 
Internet, and listed on a website requiring login. Although not 
directly translatable to programming ability, gaining access to 
the game required a fair amount of computer skills. Moreover, 
the exclusion of Internet Explorer (the most utilized browser 
worldwide at the time of the study [30]) introduced a sampling 
bias. Our participants were also well educated, with 80.1% 
reporting they had some college education or beyond. 

Capturing a time-stamped activity log of participants’ 
interactions with the game interface is a coarse instrument for 
measuring attention, particularly when it is done remotely, 
tracking only mouse and keyboard activity. Although we 
defined interaction with an interface element as having the 
mouse cursor over it, it is plausible that users may have been 
concentrating on other parts of the interface without doing so. 
This would be acceptable if all the measurements were 
randomly distributed in the same way across conditions, but 
could be problematic if they were systematically different. 

Finally, though small, there was an economic incentive for 
participants to participate in the study and to continue 
completing levels for monetary bonuses. Since these incentives 
would not exist in classrooms, or in self-guided learning 
contexts, it is unclear how or findings would generalize to 
contexts with other forms of intrinsic and extrinsic motivations. 

VI. CONCLUSION AND FUTURE WORK 
By manipulating the visual representation of data elements 

in the game to influence the purposefulness of game goals, we 
have found that novice programmers complete more levels and 
play longer when presented with images of animate, vertebrate 
animals instead of abstract objects. Our results raise many 
questions about the underlying mechanisms of this effect, 
which range from effects on motivation, learning, and 
attention. In our future work, we hope to investigate these 
possible mechanisms, leading to a deeper understanding of the 
effect of the presentation of a computer on a person’s ability 
and desire to program and do so successfully. 
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