
1

Investigating the Role of Purposeful Goals on
Novices' Engagement in a Programming Game

Michael J. Lee and Amy J. Ko
The Information School | DUB Group

University of Washington
Seattle, Washington, USA
{mjslee, ajko}@uw.edu

Abstract — Engagement is a necessary condition for learning,
especially for challenging topics such as computer programming.
Previous studies have shown that changes to the presentation of
educational game elements can significantly affect learners’
engagement to continue playing. We hypothesized that changing
the presentation of the data referred to in a game’s goals would
influence the purposefulness of the goals, thereby affecting
players’ motivation to achieve them. To test this, we designed a
game called Gidget, where the eponymous robot protagonist
needs assistance to correct its code to complete its missions. In a
three condition controlled experiment, we manipulated the
presentation of the game’s data elements and goals, and assessed
the impact on several measures of player engagement. We tested
our game with 121 self-described novice programmers recruited
on Amazon’s Mechanical Turk and found that, when given the
option to quit at any time, those in the condition using vertebrate
data elements completed twice as many levels as those using
abstract data elements. Moreover, the participants using the
vertebrate and invertebrate elements spent significantly more
time than those using the abstract data elements playing the
game overall. Finally, although players across all three conditions
spent similar amounts of time interacting with the game’s user
interface, editing code, and completing and attempting levels, we
found that those in the abstract condition were much more likely
to quit, especially on difficult levels. These findings suggest that
the presentation of game elements can strongly affect the
purposefulness of goals, which may play a significant role in
keeping self-guided learners engaged in learning tasks.

Keywords – Programming, education, engagement, games

I. INTRODUCTION
Engagement is a necessary condition for learning [12],

especially for challenging topics such as computer
programming [6]. One promising way to both engage learners
and ensure learning are educational games [12,31]. For
example, in our prior work, we have explored a debugging
game called Gidget, in which the player works with a damaged
robot to diagnose and correct its faulty programs, helping it
complete its mission objectives [22]. Games such as these can
provide immediate, interactive feedback that builds learner
confidence, allowing them to assess themselves and identify
skills they need to develop [32]. Games like Gidget are similar
to the collaboration between learner and tutor, where the tutor
(i.e. the game), provides personalized feedback to help the
learner complete their objective(s). As with a human tutor,
effective games can be engaging by providing players with
clear objectives and the skills needed to achieve them [12].

Such engagement may only occur, however, when
objectives are meaningful (i.e. have a purpose) to the learner.
Although these effects have been examined in formal
educational settings [21,25], much less is known about their
effects in informal contexts, especially in the space of
educational games. For example, in studies of attrition in CS1
courses, one of the most common factors behind dropouts were
that students did not feel that the programs they were writing
solved meaningful problems [25]. This trend was verified by
Layman et al., who argue for more meaningful assignments
after finding that 41% of 200 surveyed CS1 course projects had
no practical context (e.g. sorting a list of meaningless numbers)
[21]. In our prior work using Gidget, we investigated this effect
in the context of games, attempting to manipulate the extent to
which the player believed they were helping Gidget, comparing
a robot with a face that used personal pronouns such as “I” and
“we” to one that had no face and used conventional error
messages. We found that players who worked with the
personified robot were significantly more likely to report
wanting to help it and completed twice as many levels in a
similar amount of time as the other group [22].

Whereas in our previous study we investigated the effect of
the visual presentation of the program interpreter, in the present
study we investigate the effect of game goals, manipulated by
the presentation of data elements. Recent work has
demonstrated that humans have evolved to empathize with
animals [4], suggesting that players may attribute more purpose
in the goals working with animate data objects, particularly
vertebrates [2]. In Gidget programs, data are the objects that the
robot scans, analyzes, and moves, such as those in Table 1, and
these objects are directly tied to the goals that the player is
trying to accomplish. Goals in the game include transferring
spilled chemicals into containers, checking attributes of
objects, and moving animals to safety. We hypothesized that
changing the presentation of the data referred to in these goals

TABLE I. CONDITIONS, GOALS, AND IMAGES OF THE FIRST LEVEL
Condition Goal (Level 1) Respective Game Images

Abstract block on bin

Invertebrate beetle on jar

Vertebrate kitten on basket

2

would influence the purposefulness of goals, thereby affecting
players’ motivation to achieve them, especially as goals
become increasingly difficult to accomplish.

Our experiment, which involved 121 rank novice
programmers, asked participants to play the game (Fig. 1) until
they wished to quit, enabling us to measure engagement as play
time and the number of levels completed. To manipulate the
purposefulness of the goals, we designed three versions of the
game involving the three different kinds of objects shown in
Table 1: abstract, invertebrate, and vertebrate. We found that
those in the condition interacting with vertebrate data elements
completed significantly more levels than those in the other two
groups in a similar amount of time. In addition, although we
found that the participants using vertebrates played the game
significantly more overall, there were no significant differences
in play time on individual, attempted levels across conditions.

II. RELATED WORK
Educators use engagement to improve learning. According

to engagement theory, engaged students learn at high levels,
better grasp what they learn, and retain that knowledge [18].
Experts agree that increasing student engagement in
educational topics is key to success [8,14]. Since engagement
in learning activities is connected with tasks perceived to be
meaningful [18], it is closely related to motivation.

There are several studies demonstrating that working
towards meaningful goals positively affects engagement in
gaming and learning contexts. Bowman encourages learners to
play an active role in their engagement by having them pursue
goals they find personally meaningful [3]. Similarly, Malone

argues that a key element for creating enjoyable educational
games is to provide clear goals that students find meaningful
[23]. Vroom reported that the valence of an activity (or the
attractiveness of outcomes) plays a major role in effort
expenditure [37]. Meaningful goals have been found to be
particularly important for women [25], minorities [11], and
millennials (those born after 1982, including men) [33].
However, Layman et al. find that current CS1 courses lack
meaningful projects [21]. Our work extends these studies done
in formal learning settings, exploring how the representation of
particular game elements affects engagement in achieving
game goals in an informal learning context.

Other works support the constructionist approach to
learning, supporting children’s engagement by having them
work on relatable and personally meaningful projects [34].
Kelleher et al. [19] were one of the first to demonstrate that
opportunities and affordances for storytelling can significantly
improve learners’ motivation to program by making projects
more personally relevant. Several systems offer varying
instantiations of objects to reinforce the motivating nature of
storytelling. For example, MOOSE Crossing invites learners to
create characters and spaces in a virtual, multi-user text-based
world [5]; more recently, work by Ryokai et al. had children
learn programming by partnering with a physical robot that acts
out stories through personal drawings [36]. Storytelling Alice
[19] and Scratch [24] also enabled learners to tell and share
stories. Our work follows these traditions, but provides learners
with the story, allowing them to contribute to its progress.

Concrete representations may provide context for making
goals more purposeful. For example, an abstract task such as,

Figure 1. Gidget (showing the vertebrate condition), in which players help a damaged robot fix its broken programs. The goal of this level is to help Gidget fix the

broken program to clean and secure the area by moving the oil to the bucket, and the kitten to the basket.

3

“sort this list of integers” [21] does not convey the same
meaning as “triage these injured patients.” This strategy of
using concrete representations to explain abstract concepts is a
common pedagogical practice and supported by large
organizations such as the National Council of Teachers of
Mathematics (in this case, using concrete representations to
explain abstract concepts) [16]. However, evaluation of the
effectiveness of this practice on learning is scarce and largely
anecdotal [16], leading to many conflicting viewpoints within
the education community. For example, Ainsworth et al. [1]
found that elementary students who were shown concrete
visual aids outperformed peers who were not shown the visual
aids in a math activity. Conversely, other studies in
mathematics education found concrete instantiations introduce
irrelevant distractors that hinder students’ ability to apply their
knowledge to similar problems [17]. Still others support and
demonstrate the effectiveness of a combined approach such as
concreteness “fading,” where students are first shown a
concrete example and subsequent examples become more
abstract [13]. All these strategies, which affect learning, may
have direct implications on student engagement [27]. Our work
extends these studies done in formal learning settings,
exploring how concrete or abstract instantiations of data
elements affect engagement in achieving game goals in an
informal learning context.

III. METHOD
The aim of our study was to investigate how the

purposefulness of goals, manipulated by the visual
representation of data elements and their labeling, affects
learners’ voluntary engagement. To do this, we designed
Gidget, shown in Fig. 1. The game asked learners to help a
damaged robot fix its faulty programs in order to accomplish its
missions. Our study had three conditions: the control condition
involved data elements that were abstract and inanimate (Table
1). The two experimental conditions involved data elements
that were concrete and animate; in one condition these were
vertebrates and in the other they were invertebrates (Table 1).
We hypothesized there would be a difference in levels
completed and time spent on levels in the three conditions, with
a preference for working with vertebrates. The study was a
between-subjects design with 41 participants in the vertebrate
condition, and 40 each in the invertebrate and abstract
conditions. Participants were recruited on Amazon.com’s
Mechanical Turk and offered $0.40 for completing at least one
level, and an additional $0.10 for every level completed
onwards. The number of levels completed was displayed in the
upper right corner of the interface, along with a button giving
the participants the option to quit at any time (Fig. 1). The key
dependent variable in our study was engagement, which we
operationalized as the number of levels completed, the time
spent on each level, and the use of different UI elements such
as the code editor. In this section, we describe the game, the
experimental manipulations, our dependent variables, and our
experimental procedure.

A. The Game
Our game, called Gidget (shown in Fig. 1), is a web-based,

HTML5 application. Learners are guided through a sequence of
levels that teach the design and analysis of basic algorithms in
a simple imperative language designed specifically for the
game. A simple story motivates the game: a small robot capable
of identifying and solving problems with programs has been

deployed to clean up the area and shut down a factory that has
gone awry. Unfortunately, the robot was damaged during
transportation, and now struggles to complete its missions,
generating programs that almost accomplish its missions, but
not quite. It is up to the learner to help the robot by figuring out
and fixing its problematic code. In this sense, the learner and
the robot are a team, working together to complete levels and
ultimately shut down the hazardous factory.

The primary activity in the game is to learn how to
communicate with the robot via commands to help it
accomplish a series of goals. The levels, goals, language, and
user interface (UI), however, were designed to teach specific
aspects of algorithm design. The first 9 levels focus on teaching
the 7 basic commands in the robot’s syntax grammar (Table 2)
as well as variations on how these commands can be written.
These levels each contain some syntax error that learners must
understand and correct by inspecting the program, executing it,
and optionally reading Gidget’s explanations of his actions at
each step in the code (e.g. Fig. 1.4). The subsequent 9 levels
teach design patterns for composing these commands to
achieve more powerful behaviors, each containing some
semantic error. Each level includes one or more goals (Fig.
1.2), which are executable expressions that must all be true
after program execution to proceed to the next level. Each goal
is on a single line predicate, with corresponding references to
the data elements in the world (e.g., Fig. 1.2 and 1.6: kitten and
bucket).

Table 2 explains the robot’s commands. Learners had
access to a similar syntax reference, but with simpler
explanations, through the ? button at the top right of the editor
(Fig. 1.1). Each of the 7 commands could be followed by a ‘,’
and subsequent command, allowing the robot to iterate over a
set of things with a given name. For example, if there were
multiple kittens in Fig. 1, the command goto kitten, grab it would
iteratively go to each kitten, grab the kitten, and then go to the
next kitten. The current object in a set is pushed onto the focus
stack (Fig. 1.5); it always resolves to the object at the top of
this stack. The results stack tracks matching names for each

TABLE II. GIDGET COMMAND SYNTAX AND SEMANTICS

 scan thing
Enables Gidget to goto all things with name thing. Scanned things are
added to the set named scanned in Gidget’s memory.

 goto thing1 [avoid thing2]
Moves Gidget to all of the things matching the name thing1, one square at
a time If a thing to avoid is given, for each step that Gidget takes, he
attempts to find a path that stays at least 1 square away from things with
the name thing2.

 analyze thing
Enables Gidget to ask all things with name thing to perform an action.
Analyzed things are added to the set named analyzed in Gidget’s memory.

 ask thing to action thing *
Causes thing to perform action, if action is defined. Zero or more things are
passed as arguments. Gidget’s execution is suspended until the thing
asked has completed requested action.

 grab thing
Adds all things with name thing to the set named grabbed in Gidget’s
memory, removing them from the grid and constraining their location to
Gidget’s location.

 drop thing
Removes all things with name thing in that were previously grabbed from
the set grabbed set.

 if thing is[n't] aspect, command
For each thing with name thing that has been analyzed, execute the
specified command if that thing contains an aspect of name aspect.

4

command’s thing query. Each of these data structure views are
updated after each step in the program, providing learners with
a visualization of Gidget’s state.

In the game, Gidget programs are primarily capable of
findings things in the world (Fig. 1.6), going to them, checking
their properties, and moving them. In some cases, objects have
their own abilities, which can be invoked like a function. After
each execution step, the effect of these commands is shown in
the memory pane (Fig. 1.5) and explained by the robot (Fig.
1.4), teaching the semantics of each command to players. Each
step costs 1 unit of energy (above Fig. 1.5), requiring learners’
to carefully consider how to write their code to complete each
level within the allotted number of energy units.

The robot is detailed in its interpretation of each command,
explaining what action it has taken after each step (Fig. 1.4)
and visualizing changes to the data structures it maintains in
memory (Fig. 1.5). When it arrives at an unrecognized or
incomplete command, it explicitly highlights the missing
information and explains what interpretation it is going to make
before proceeding (e.g. Fig. 2). Upon execution of a line with
parsing errors, the system also opens up a syntax guide
available from the ? in the editor (Fig. 1.1), highlighting the
rule that the robot guessed was being used. Finally, the robot
was given facial expressions (neutral, happy, and sad) shown
upon error states and goal completions. It referred to itself and
the player using personal pronouns in its feedback such as “I
don’t know what this is...” and “I never could have done it without
you!” This was based on research showing that personified
feedback by an interpreter with agency significantly increased
learners’ engagement [22].

To aid the players with debugging, the game includes four
execution controls for the code: one step, one line, all steps,
and to end (Fig. 1.3). The one step button evaluates one
compiled instruction in the code, as a breakpoint debugger
does, but also displays text describing the execution of the step
(Fig. 2). The one line button evaluates all steps contained on
one line of the code, jumping to the final output of that line
immediately. The all steps button evaluates the entire program
and the goals in one button press, animating each step. The to
end button does the same as all steps, but only shows the
program end state, without animating intermediate steps.

The game was compatible on MacOS X, Windows 7, and
Ubuntu Linux 10, using Apple Safari 5, Mozilla Firefox 5, and
Google Chrome 10. (We were unable to support Microsoft
Internet Explorer 9 because it lacked the contentEditable
attribute, which was used to implement the editor). This may
have affected our participant recruiting, since at the time of the
study, nearly half of worldwide web traffic was from lesser
versions of Internet Explorer [30].

B. The Three Level Conditions
The independent variables we manipulated in our

experiment were the labels and visual appearance (Table 3) of
the objects referred to in the level goals (Fig. 1.2). In the
abstract condition, the data elements the player and robot
interacted with were designed to be inanimate, abstract objects.
This condition was intended to diminish the purposefulness of
the goals, separating them from the context of the story. The
items in the abstract condition were all blocks of various colors
with abstract signs, such as the arrow in Table 3. In contrast,
both of the experimental conditions’ data elements were
designed to be specific, animate, concrete objects. In the
vertebrate condition, the data elements included cats, birds,
dogs, kittens, puppies, piglets, and rats. In the invertebrate
condition, the data elements included beetles, flies, ladybugs,
bees, termites, butterflies, and spiders. These conditions were
intended to increase the purposefulness of the goals, tying them
to the context of the story. Our hypothesis, based on prior work
showing that humans empathize and attribute more positive
attitudes towards vertebrates [2,4], was that players would
ascribe more purpose in saving vertebrates (and perhaps
invertebrates) than abstract objects, and therefore complete
more levels.

Many of the level goals required Gidget to move certain
data elements to the position of another, usually a container like
those in the first column of Table 3. The visual representation
and names of these data elements were also different in each
condition, reflecting the overall theme of its group’s other data
elements. There were two distinct containers in each condition,
including bin/pod, basket/bucket, and jar/bucket for the
abstract, vertebrate, and invertebrate conditions, respectively.

C. Recruitment
The population we focused on were rank novice

programmers, defined as individuals who self-reported that
they had never written a computer program. To recruit these
individuals, we used Amazon.com’s Mechanical Turk (MTurk),
an online marketplace where individuals can receive micro-
payments for doing small tasks called Human Intelligence
Tasks (HITs). Since workers are sampled from all over the
globe, MTurk studies can generalize to more varied
populations than samples from limited geographic diversity
[20]. However, due to the nature of the low monetary
compensation and anonymity of the workers, careful
consideration has to be taken to ensure the quality of workers’
submissions [10,20]. To address this, we required that
participants complete at least one level to receive credit for the
HIT, ensuring that they actually interacted with Gidget, the
code, goals, and the data elements before quitting.

TABLE III. A SELECTION OF DATA ELEMENTS FROM THE 3 CONDITIONS

(inanimate)
abstract

bin block block tile

(animate &
concrete)

invertebrate
jar beetle fly ladybug

(animate &
concrete)

vertebrate
basket kitten bird dog

Figure 2. Code (left) and Gidget’s response (right) describing the execution

step using personal pronouns to increase agency.

5

D. Pricing and Validation
Our pricing model and validation method was carried over

from a previous study [22]. Since our game had a total of 18
levels, we decided to compensate our participants with a base
rate and a nominal bonus payment for each level they
completed. Participants were instructed that only the first level
was required to receive compensation, and that subsequent
levels were completely voluntary. Previous studies have found
that higher payments do not necessarily equate to better results
[15], so we calibrated our payments to established market
prices. To do this, we observed MTurk HITs tagged “game” for
14 days. We filtered these HITs to include only those that had
an actual gameplay element as the main component (as
opposed to tasks such as writing reviews for games). From
these HITs, we constructed a list of ‘reward’ and ‘time allotted’
values, along with any explicit bonus payments mentioned. Our
goal was to set a base reward that was high enough to attract
participants, but also as low as possible to minimize
participants’ sense of obligation to spend time on our HIT.
Likewise, we wanted our bonus payments to have a minimal
effect on a worker’s decision to continue playing the game.

Based on our data, we determined our optimal base reward
as $0.30 for starting the HIT, and an additional $0.10 for each
level completed. Because we required that players complete at
least one level to get paid, the minimum compensation was
$0.40. Participants were not informed of the total number of
levels to eliminate that factor from their decision to continue
playing the game. In addition, we set the ceiling for submission
time to 3 hours so that potential participants could gauge the
difficulty of the HIT compared to other HITs. Finally, we
deliberately avoided mentioning programming in the HIT
description to prevent people from self-selecting out because of
its association with programming. However, since the HIT
description included the words “game” and “robot,” we may
have introduced some selection bias related to these topics.

To further validate our pricing model and detect defects and
usability problems in the game, we conducted a pilot test on
MTurk with 29 participants. The pilot study results verified that
participants were willing to complete levels and that the system
functioned as expected. Based on the information we received,
we fixed a few minor data element name inconsistencies.

E. The Participants
Because we deliberately chose not to mention programming

in our HIT description, we could not exclude those with prior
programming experience from participating. Therefore, we
recruited a large sample of 251 participants from MTurk. Of
these, 121 met our criteria for being novice programmers,
which included all participants who responded “never” to all of
the following statements: 1) “taken a programming course,” 2)
“written a computer program,” and 3) “contributed code
towards the development of a computer program.”

Participants were distributed proportionally among our
three conditions by demographics, with no statistically
significant differences in gender (χ2(2,N=121)= 1.1,n.s.), age
(χ2(2,N=121)= 3.6,n.s.), level of education (χ2(14,N=121)=
4.0,n.s.), or country of residence (χ2(32,N=121)= 30.7,n.s.).
The median age was 26, ranging from 18 to 66 years old.
Though we expected there to be a gender sampling bias
because the HIT was labeled as a game, our sample included 63
females and 58 males, which is consistent with other MTurk

findings that females are major contributors on the site [35].
Participants were primarily from the US (61.6%), and India
(14%). The remaining were from the UK (5.6%), Canada
(3.3%), and 13 other countries (16%). Consistent with studies
of mTurk demographics [10,20], our sample was well-
educated, reporting that their highest level of education
achieved was: less than high school (1.7%), high school
(17.4%), some college (21.5%), an associates degree (8.3%), a
bachelor’s degree (38%), a masters degree (8.36%), a
professional degree (1.7%), or a doctorate (3.3%).

F. Procedure & Dependant Measures
On game load, each participant was randomly assigned one

of three conditions: abstract, vertebrate, or invertebrate. This
information, along with each player’s current game state was
logged on the client-side to ensure participants would never be
exposed to another condition, even if they refreshed their
browser. Once a participant chose to quit, they were given a
post-survey asking about gender, age, country, education, and
programming experience. Finally, the survey asked participants
to select their level of agreement to the following statements on
a 5-level Likert scale to get a sense of participants‘ attitude
towards game elements: 1) “I enjoyed playing the game,” 2) “I
would recommend this game to a friend wanting to learn
programing,” 3) “I wanted to help Gidget succeed,” and 4) “I
enjoyed interacting with the objects in Gidget’s world.”

After submitting their responses, the participant received a
unique code to receive payment for their submission. In
addition to the survey responses, we collected a time-stamped
activity log for each level a participant attempted including: (1)
Each press of any of the four execution buttons and a copy of
the code at the time of execution; (2) Level start & level end:
events marking when a player started and completed or quit a
level; (3) Idle start & idle stop: events marking when a player
provided no mouse or keyboard input for 30 seconds or more,
and where in the UI panes (Fig. 1) the idle time occurred,
including the syntax help pane. Events were also recorded
marking resumption in activity; (4) Edit time (edit in & edit out):
events marking when the player clicked inside the code pane
(Fig. 1.1) to edit code or clicked elsewhere to leave the editing
pane; (5) Pane Time (time in & time out): timestamps of mouse
cursor movement over or out of the seven major UI panes.

From these, we calculated the following dependent
measures for each participant: (1) Time on level: how long
individual participant was actively engaged with the code and
interface of each level overall, adjusted by subtracting idle time.
This was calculated for each level by first taking the difference
of level end and level start, then subtracting idle time for that
level; (2) Time overall: how long each participant played the
game overall, adjusted by subtracting idle time. This was
calculated by summing up the all of the time on level data per
participant and subtracting the sum of their idle time.

Finally, we used each participants’ number of levels
completed, time to complete or quit a level, and logs of
execution buttons and UI pane activity, to compute dependent
measures on participants’ activity proportional to overall time
spent on levels.

IV. RESULTS
Table 4 presents the results for both novice and experienced

programmers. We used non-parametric tests, as our dependent

6

measures were not normally distributed. Our level of
confidence was set at α=0.05.

A. Vertebrate Condition Players Complete More Levels
Since we required that all participants complete the first

level to receive payment, the minimum number of levels
completed was one. The maximum number of levels completed
in the abstract, invertebrate, and vertebrate conditions were 9,
16, and 18, respectively. There was a significant difference in
the number of levels participants completed between the three
conditions (χ2(2,N=121)=7.3,p<.05). Further post-hoc analysis
with a Bonferroni correction shows that the significantly
different pair was the abstract vs. vertebrate conditions
(W=1380.5,Z=-2.5,p<.01), with the vertebrate group
completing more levels. Comparison of the abstract vs.
invertebrate (W=1669.5,Z=0.5,n.s.) and vertebrate vs.
invertebrate (W=1427.5,Z=-2.0,n.s.) conditions showed no
differences.

Investigating this difference further, the distribution of
percentage of participants remaining (Fig. 3) shows that
approximately 25% of the participants from each group quit the
game after completing only the first level. Next, many
participants quit on level 4, which required them to use the
command learned in the previous level with a new command to
complete the goal. Finally, participants quit again in large
numbers on level 6, which introduced conditional statements.
This is consistent with others’ findings that novice
programmers have difficulty with conditional logic [9,26].
Here, the abstract condition had the most drastic drop with 90%
of its participants quitting, followed by the invertebrate
condition’s drop of 77.5% its participants, and finally, the
vertebrate condition with 67.5% of its participants quitting. All
of the abstract condition’s participants quit by level 10, whereas
both animate, concrete conditions had a few participants
complete or nearly complete all the levels.

Since all participants were novice programmers with no
statistical difference in demographics, these results suggest that
interacting with goals that use concrete data elements had a
significant positive effect on participants’ engagement with the
game, particularly on levels introducing difficult concepts.

B. Both Animate Conditions Players Play Longer
There was a wide range of overall play times for the

abstract, invertebrate, and vertebrate conditions (4.9 min to 1.3
hrs, 8.3 min to 1.9 hrs, and 6.9 min to 2.8 hrs, respectively).
There was a significant difference in the length of time
participants played the game overall by condition
(χ2(2,N=121)=10.2,p<0.01). A post-hoc analysis with

Bonferonni correction reveals that two conditional pairs were
s i g n i f i c a n t l y d i f f e r e n t : a b s t r a c t v s . v e r t e b r a t e
(W=1330,Z=-2.9,p<.016) and abstract vs. invertebrate
(W=1889,Z=2.6,p<.016). In both cases, the participants in the
abstract condition spent significantly less time playing the
game than the other conditions. Play time between the animate,
concrete conditions did not differ (W=1620,Z=-0.2,n.s.).

Next, we investigated how quickly players completed levels
by comparing participants’ ratio of total play time to number of
levels p layed, f inding no s ignif icant d i fference
(χ2(2,N=121)=3.7,n.s.). These findings are supported by Fig. 4,
which shows that the median times to complete the first 5
levels are comparable across conditions. The sporadic time
shown in the remainder of the figure may be attributed to the
individual differences of the smaller number of participants
completing later levels.

C. No Significant Differences in Code Execution Strategies
One possible explanation for the differences in levels

completed was a different use of the game UI. Therefore, we
investigated the proportion of execution button presses per unit
time on completed levels, for each of the four execution
buttons, finding no significant differences in usage (one step:
(χ2(2, N=121)=2.2,n.s.), one line: (χ2(2,N=121)=0.5 n.s.), all
steps: (χ2(2,N=121)=1.6, n.s.), to end: (χ2(2,N=121)=0.1 n.s.)).
These results show that the differences in success were likely

0"

5"

10"

15"

20"

25"

30"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18"

M
ed

ia
n'
Ti
m
e'
to
'C
om

pl
et
e'
'

Level'Number'

abstract'

invertebrate'

vertebrate'

Figure 4. Median times to complete each level, by condition. The times
for the first 5 levels were comparable.

0%#

25%#

50%#

75%#

100%#

1# 2# 3# 4# 5# 6# 7# 8# 9# 10# 11# 12# 13# 14# 15# 16# 17# 18#

Pa
r$
ci
pa

nt
s+R

em
ai
ni
ng
+

Level+Number+

abstract+

invertebrate+

vertebrate+

Figure 3. Percent of players remaining for each condition at each level.
By level 10, all in the abstract condition had quit.

TABLE IV. SUMMARY OF NON-PARAMETRIC TESTS

Novice
(χ2: df=2, N=121)

Experienced
(χ2: df=2, N=130)

of levels completed (χ2 =7.3, p<.05) (χ2 =4.3, n.s.)

Time played overall (χ2 =10.2, p<.01) (χ2 =3.5, n.s.)
Ratio of time played to

levels played (χ2 =3.7, n.s.) (χ2 =2.9, n.s.)

E
x
e
c

One Step (χ2 =2.2, n.s.) (χ2 =0.8, n.s.)
One Line (χ2 =0.5, n.s.) (χ2 =0.7, n.s.)
All Lines (χ2 =1.6, n.s.) (χ2 =2.6, n.s.)
To End (χ2 =0.1, n.s.) (χ2 =0.5, n.s.)

U
I

P
a
n
e
s

Code (χ2 =2.5, n.s.) (χ2 =0.9, n.s.)
Goal (χ2 =4.0, n.s.) (χ2 =0.9, n.s.)

Execution (χ2 =3.7, n.s.) (χ2 =2.7, n.s.)
Feedback (χ2 =0.3, n.s.) (χ2 =2.8, n.s.)

World (χ2 =4.3, n.s.) (χ2 =2.1, n.s.)
Memory (χ2 =1.0, n.s.) (χ2 =0.4, n.s.)

Cheat Sheet (χ2 =5.8, n.s.) (χ2 =3.4, n.s.)
Edit Time (χ2 =0.9, n.s.) (χ2 =1.7, n.s.)

7

not due to one condition executing the program more
frequently or stepping through it differently.

D. No Differences in User Interface Usage
Another possible explanation for the disparity in levels

completed was differences in how participants used the various
panels in the UI. We examined the proportion of interface pane
usage to overall time on levels played, again finding no
significant differences among conditions (Code: (χ2(2,N=121)
=2.5, n.s.), (Goals: (χ2(2,N=121) =4.0, n.s.)) Execution:
(χ2(2,N=121) = 3.7, n.s.), Feedback: (χ2(2,N=121) = 0.3, n.s.),
World: (χ2(2,N=121) =4.3, n.s.), Memory: (χ2(2, N=121) =1.0,
n.s.), CheatSheet: (χ2(2,N=121) =5.8, n.s.)). We also tested the
proportion of time spent editing code (computed from the logs)
to overall time on levels and found no significant differences
among conditions (χ2(2,N=121) =0.9, n.s.).

All of these results suggest that the differences in success
and play time were not due to different in the proportion of
time players used each of the user interfaces in the game.

E. No Significant Differences in Attitudes
Although there was a trend in survey responses indicating a

positive experience playing the game, there was no significant
difference in participants’ self-reported level of enjoyment
comparing the three conditions (χ2(8,N=121)=5.8,n.s.) or
whether they would recommend the game to a friend wanting
to learn programming (χ2(8,N=121)=4.1,n.s.). Similarly, there
was a positive trend in responses across conditions, but no
significant difference in participants’ self-reported desire to
help Gidget succeed (χ2(8,N=121)=11.6,n.s.) or whether they
enjoyed working with their data elements (χ2(8,
N=121)=5.5,n.s.). Here, our findings are similar to those by
Nass et al., where participants did not believe the computer
affected their performance, even when it did [29].

F. No Significant Effects for Experienced Programmers
Whereas the rank novices showed significant differences in

level completion and play time, players with self-reported
programming experience showed no differences in any of the
previously reported analyses (Table 4) such as play time or
levels completed. This group consisted of 130 participants with
38, 47, and 45 in the abstract, invertebrate, and vertebrate
conditions, respectively. These were the participants who
reported in the survey that they have: 1) taken a programming
course, 2) written a computer program, or 3) contributed code
towards the development of a computer program.

V. DISCUSSION
Our findings show that goals involving animate rather than

inanimate objects significantly increases learners’ engagement
in a programming game, leading rank novices to play
significantly longer and complete significantly more levels.
Moreover, we showed that these effects were not due to
differences in how players executed the programs, how they
used the game UI, how long they attempted each level, or how
much time they spent editing their code. This manipulation had
no effect, however, on players with programming experience.

There are several possible interpretations of these results.
One possibility is that when reaching a difficult level, players
saw a greater purpose in saving an animal or insect than in
moving a block, and therefore kept playing when goals were to
help animate objects. Prior research on computer science

recruitment shows that there are gender specific effects in
motivation to enroll, specifically related to the reasons for
computing (females are enticed when they see how computing
can be used for a purpose) [25]. The non-effect for experienced
programmers might be attributed to their familiarity to the
concepts being taught, meaning that the effect of the goals was
overcome by the lack of challenge.

Another potential explanation is that participants paid
closer attention to code involving animate objects and therefore
understood the semantics of the programming language better,
making the difficult levels easier. This idea is supported by
recent work in neuroscience showing that human brains attend
preferentially to images of animate over inanimate objects [28].
Additionally, or alternatively, participants in the animate
conditions may have been better able to comprehend the
robot’s explanations of its actions because the messages
involved concrete, animate objects that had meaning in the
context of the game. Experienced programmers may have been
less interested in the robot’s explanations; instead, they likely
used their prior knowledge of programming syntax and
semantics to complete goals, minimizing their attention
towards the different data elements’ icons and labels.

Because there were no distinguishable differences in play
time between levels across conditions, it is also possible that
participants had comparable success in learning, but different
amounts of retention. In addition to playing a role in learning-
related retention [7], the amygdala has been shown to prefer
images of animals over other objects [28]; therefore, players
may simply have remembered more about the meaning of
commands from previous levels when the levels involved
animals. The non-effect for experienced programmers can
likely be attributed to their familiarity of memorizing and using
commands to write computer code.

A. Implications
Our results have many potential implications on our

understanding of online learning, the role of game elements in
engagement, and computing education pedagogy. Our results
show that purposeful goals may play a significant role in
engagement in the context of self-guided, discretionary,
educational games. These findings support prior works done in
classroom settings [19,25], and broadens them to informal
learning settings. Future work should investigate the effects of
these factors on learning, both in formal and informal contexts.

In addition, this study demonstrated that small changes to
the game elements can have a significant effect on engagement
in educational games. Here, we had large effect sizes, with
double the overall play time and level completion, as was the
case in our prior study [22]. This suggests that in the growing
amount of work in educational games research, game designers
should be doing more on low-level factors that are predicted to
be influential by research in learning, memory, and attention.

B. Threats to Validity
Our results have a number of limitations that may restrict

their generalizability and validity. First, MTurk allows
participants to self-select into HITs. Our HIT did not require
any special qualifications and mentioned games and robots,
both of which may have led us to recruit participants with
interests or experience with both. Although we tried to account
for factors that would affect the HIT’s listing on Amazon’s HIT
page, those who filtered for higher-paying HITs would be less

8

likely to find our HIT, whereas those filtering for a tag labeled
“game” would be more likely to find our HIT.

The game was accessible by computer, connected to the
Internet, and listed on a website requiring login. Although not
directly translatable to programming ability, gaining access to
the game required a fair amount of computer skills. Moreover,
the exclusion of Internet Explorer (the most utilized browser
worldwide at the time of the study [30]) introduced a sampling
bias. Our participants were also well educated, with 80.1%
reporting they had some college education or beyond.

Capturing a time-stamped activity log of participants’
interactions with the game interface is a coarse instrument for
measuring attention, particularly when it is done remotely,
tracking only mouse and keyboard activity. Although we
defined interaction with an interface element as having the
mouse cursor over it, it is plausible that users may have been
concentrating on other parts of the interface without doing so.
This would be acceptable if all the measurements were
randomly distributed in the same way across conditions, but
could be problematic if they were systematically different.

Finally, though small, there was an economic incentive for
participants to participate in the study and to continue
completing levels for monetary bonuses. Since these incentives
would not exist in classrooms, or in self-guided learning
contexts, it is unclear how or findings would generalize to
contexts with other forms of intrinsic and extrinsic motivations.

VI. CONCLUSION AND FUTURE WORK
By manipulating the visual representation of data elements

in the game to influence the purposefulness of game goals, we
have found that novice programmers complete more levels and
play longer when presented with images of animate, vertebrate
animals instead of abstract objects. Our results raise many
questions about the underlying mechanisms of this effect,
which range from effects on motivation, learning, and
attention. In our future work, we hope to investigate these
possible mechanisms, leading to a deeper understanding of the
effect of the presentation of a computer on a person’s ability
and desire to program and do so successfully.

REFERENCES
1. Ainsworth, S.E., Bibby, P.A., Wood, D.J. (2002). Examining the effects

of different multiple representational systems in learning primary
mathematics. J. of Learning Sciences. 11(1), 25-62.

2. Batt, S. (2009). Human attitudes towards animals in relation to species
similarity to humans: a multivariate approach. Bioscience Horizons 2:
180–190.

3. Bowman, R.F. (1982). A Pac-Man theory of motivation: tactical
implications for classroom instruction. Educational Tech., 22(9), 14-16.

4. Bradshaw, J.W.S., Paul, E.S. (2010). Could empathy for animals have
been an adaptation in the evolution of Homo sapiens? Animal Welfare,
19(1), 107-112.

5. Bruckman, A. (1997). MOOSE Crossing: Construction, Community, and
Learning in a Networked Virtual World for Kids. MIT Media Lab.

6. Carter, L. (2006). Why students with an apparent aptitude for computer
science don’t choose to major in computer science. ACM SIGCSE
Bulletin, 27–31.

7. Chavez, C.M., McGaugh, J.L., Weinberger, N.M. (2009). The basolateral
amygdala modulates specific sensory memory representations in the
cerebral cortex. Neurobiology of Learn Memory, 91, 382–392.

8. Corno, L., Mandinach, E.B. (2004). What we have learned about student
engagement in the past twenty years. Big Theories, 297–326.

9. Dahotre, A., Zhang, Y., Scaffidi, C. (2010). A qualitative study of
animation programming in the wild. ACM-IEEE ESEM, 1-10.

10. Downs, JS., Holbrook, MB, Sheng, S., Cranor, L.F. (2010). Are your
participants gaming the system? Screening mechanical turk workers.
ACM CHI, 2399-2402.

11. Freeman, P., Aspray, W. (1999). The supply of information technology
workers in the United States. Computing Research Association

12. Garris, R., Ahlers, R., Driskell, J.E. (2002). Games, motivation, and
learning: a research and practice model. Simulation & gaming, 441–467.

13. Goldstone, R., Sakamoto, Y. (2003). The transfer of abstract principles
governing complex adaptive systems. Cognitive Psychology, 414–466.

14. Hardy, C., Bryson, C. (2010). Student engagement: paradigm change or
political expediency? Networks, 09, 19-23.

15. Hsieh, G., Kraut, R.E., Hudson, S.E. (2010). Why pay?: exploring how
financial incentives are used for question & answer. ACM CHI, 305-314.

16. Kaminski, J.A., Sloutsky, V.M., Heckler, A.F. (2005). Relevant
Concreteness and its Effects on Learning and Transfer. Cognitive
Science Society, 1139-1144.

17. Kaminski, J.A., Sloutsky, V.M., Heckler, A.F. (2009). Concrete
instantiations of mathematics: a double-edged sword. J. for Research in
Math Edu., 40, 90-93.

18. Kearsley, G., Shneiderman, B. (1998). Engagement Theory: a
framework for technology-based teaching and learning. Educational
Technology, 38(5), 20-23.

19. Kelleher, C., Pausch, R., Kiesler, S. (2007). Storytelling Alice motivates
middle school girls to learn computer programming. ACM CHI,
1455-1464.

20. Kittur, A., Chi, E.H., Suh, BW. (2008). Crowdsourcing user studies with
Mechanical Turk. ACM CHI, 453-456.

21. Layman, L., Williams, L., Slaten, K. (2007). Note to self: make
assignments meaningful, ACM SIGCSE, 459-463.

22. Lee, M.J., Ko, A.J. (2011). Personifying Programming Tool Feedback
Improves Novice Programmers’ Learning. ACM ICER, 109-116.

23. Malone, T. W. (1981). What makes computer games fun? Byte, 6(12),
258-277.

24. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010).
The scratch programming language and environment. ACM TOCE, 1-15.

25. Margolis, J., Fisher, A. (2002). Unlocking the Clubhouse. MIT Press.
26. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. (2010). Learning

computer science concepts with Scratch. ACM ICER, 69-76.
27. Miller, R.B., Greene, B.A., Montalvo, G.P, Ravindran, B., Nichols, J.D.

(1996). Engagement in academic work. Contemporary Educational
Psychology. 21, 388-422

28. Mormann, F., Dubois, J., Kornblith, S., Milosavljevic, M., Cerf, M.,
Ison, M., Tsuchiya, N., et al. (2011). A category-specific response to
animals in the right human amygdala. Nature Neuroscience.

29. Nass, C., Fogg, B.J., Moon, Y. (1996). Can computers be teammates?
International J. of Human-Computer Studies, 45, 669-678.

30. NetMarket Analytics. Retrieved September 12, 2011, from http://
www.netmarketshare.com

31. Oblinger, D. (2004). The next generation of educational engagement.
Journal of Interactive Media in Education, 8.

32. Oblinger, D., Martin R., Baer, L. (2004). Unlocking the potential of
gaming technology. National Learning Infrastructure Initiative.

33. Oblinger, D., Oblinger, J. (2005). Educating the net generation.
Educause.

34. Papert, S. (1980). Mindstorms. Basic Books.
35. Ross, J., Irani, I., Silberman, M. Six, Zaldivar, A., Tomlinson, B. (2010).

Who are the crowdworkers?: shifting demographics in Amazon
Mechanical Turk. ACM CHI, 2863-2872.

36. Ryokai, K., Lee, M.J., Breitbart, J.M. (2009). Children's storytelling and
programming with robotic characters, ACM C&C, 19-28.

37. Vroom, V. H. (1964). Work and motivation. New York: Wiley.

http://www.netmarketshare.com
http://www.netmarketshare.com

