

A Principled Evaluation for
a Principled Idea Garden

1School of EECS, Oregon State University
Corvallis, Oregon, USA

2Information School, University of Washington
Seattle, Washington, USA

{jernigaw,horvatha,burnett,cuiltyt,kuttals,peterani}@eecs.oregonstate.edu {mjslee,ajko}@uw.edu

Abstract—Many systems are designed to help novices who
want to learn programming, but few support those who are not
interested in learning (more) programming. This paper targets
the subset of end-user programmers (EUPs) in this category. We
present a set of principles on how to help EUPs like this learn
just a little when they need to overcome a barrier. We then in-
stantiate the principles in a prototype and empirically investigate
the principles in two studies: a formative think-aloud study and a
pair of summer camps attended by 42 teens. Among the surpris-
ing results were the complementary roles of implicitly actionable
hints versus explicitly actionable hints, and the importance of
both context-free and context-sensitive availability. Under these
principles, the camp participants required significantly less in-
person help than in a previous camp to learn the same amount of
material in the same amount of time.

Keywords—End-user programming; problem solving

I. INTRODUCTION

 End-user programmers (EUPs) are defined in the literature
as people who do some form of programming with the goal of
achieving something other than programming itself [30]. In
this paper, we consider one portion of the spectrum of EUPs—
those who are definitely not interested in learning program-
ming per se, but are willing to do just enough programming to
get their tasks done.

We can describe EUPs like this as being “indifferent” to
learning programming (abbreviated “indifferent EUPs”). Indif-
ferent EUPs are described well by Minimalist Learning Theo-
ry’s [10] notion of “active users”. That theory describes users
who are just interested in performing some kind of task—such
as getting a budget correct or scripting a tedious web-based
task so that they do not have to do it manually—not in learning
about the tool and its features. According to the theory, active
users like our indifferent EUPs are willing to do a bit of learn-
ing only if they expect it to help them get their task done.

We would like to help indifferent EUPs in the following
situation: they have started a task that involves programming,
and then have gotten “stuck” partway through the process. As
we detail in the next section, indifferent EUPs in these situa-
tions have been largely overlooked in the literature.

We have been working toward filling this gap through an
approach called the Idea Garden [6, 7, 8, 9]. Our previous

work has described the Idea Garden and its roots in Minimalist
Learning Theory. In essence, the Idea Garden exists to entice
indifferent EUPs who are stuck, to learn just enough to help
themselves become unstuck. Empirical evaluations of the Idea
Garden to date have been encouraging.

This paper asks a principled “why”. What are the essential
characteristics of systems like the Idea Garden? To answer this
question, we present seven principles upon which (we hypothe-
size) the Idea Garden’s effectiveness rests, and instantiate them
in a new Idea Garden prototype that sits on top of the
Gidget EUP environment [26]. We then empirically
investigate in two studies, principle by principle, the
following research question: How do these principles influence
the ways indifferent EUPs can solve the programming prob-
lems that get them “stuck”?

II. BACKGROUND AND RELATED WORK

As we have explained, the most relevant foundational basis
for the Idea Garden’s target population is Minimalist Learning
Theory (MLT) [10, 11]. MLT was designed to provide guid-
ance on how to teach users who (mostly) don’t want to be
taught. More specifically, MLT’s users are motivated simply
by getting the task at hand accomplished. Thus, they are often
unwilling to invest “extra” time to take tutorials, read docu-
mentation, or use other training materials—even if such an
investment would save them time in the long term. This phe-
nomenon is termed the “paradox of the active user” [10]. MLT
aims to help those who face this paradox to learn, despite their
indifference to learning.

The Idea Garden also draws from foundations on curiosity
and constructivist learning. To deliver content to indifferent
EUPs, the Idea Garden uses Surprise-Explain-Reward (a strat-
egy studied in [33]) to surprise EUPs as a curiosity-based en-
ticement. To encourage learning while acting, the Idea Garden
draws from constructivist theories surveyed in [4] to keep users
active, make explanations not overly directive, and motivate
users to draw upon their prior knowledge. Moreover, the Idea
Garden encourages users to construct meaning from its expla-
nations by arranging, modifying, rearranging, and repurposing
concrete materials in the way bricoleurs do [35].

Our work is also related to research that aims to help naive
users learn programming, often through the use of new kinds of
educational approaches, or special-purpose programming lan-
guages and tools [15, 19, 20, 21, 34]. Stencils [22] presents
translucent guides with tutorials to teach programming skills.

This work supported in part by NSF CNS-1240786, CNS-1240957, CNS-
1339131, CCF-0952733, IIS-1314399, IIS-1314384, IIS-1528061, and OISE-
1210205. Any opinions, findings, conclusions or recommendations are those
of the authors and do not necessarily reflect the views of NSF.

2015 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC)

978-1-4673-7457-6/15/$31.00 ©2015 IEEE 235

Sandeep Kuttal¹, Anicia Peters¹, Irwin Kwan¹, Faezeh Bahmani¹, Amy Ko²
Will Jernigan¹, Amber Horvath¹, Michael Lee², Margaret Burnett¹, Taylor Cuilty¹,

The stencils overlaid upon the Alice interface show users the
only possible interactions and explain them with informative
sticky notes, but the Idea Garden aims to help users figure out
the interactions themselves. Also, these approaches target users
who aspire to learn some degree of programming, whereas the
Idea Garden targets those whose motivations are to do only
enough programming to complete some other task.

In EUP systems targeting novices who do not aspire to be-
come professional programmers, a common thread has been to
simplify programming via language design. For example, the
Natural Programming project promotes designing program-
ming languages to match users’ natural vocabulary and expres-
sions of computation [29]. One language in that project, the
HANDS system for children, depicts computation as a friendly
dog who manipulates a set of cards based on graphical rules,
which are expressed in a language designed to match how chil-
dren described games [32]. Other programming environments
such as Alice [21] incorporate visual languages and direct or
tangible manipulation to make programming easier for EUPs.
The Idea Garden approach is not about language design, but
rather about providing conceptual and problem-solving assis-
tance in whatever language/environment is hosting it.

A related approach is to reduce or eliminate the need for
explicit programming. For example, programming by demon-
stration allows EUPs to demonstrate an activity from which the
system automatically generates a program (e.g., [13]). Some
such environments (e.g., CoScripter/Koala [27]) also provide a
way for users to access the generated code. Another family of
approaches seeks to delegate some programming responsibili-
ties to other people. For example, meta-design aims at design
and implementation of systems by professional programmers
such that the systems are amenable to redesign through config-
uration and customization by EUPs [1, 12].

Another way to reduce the amount of programming needed
is by connecting the user with examples they can reuse as is.
For example, FireCrystal [31] is a Firefox plug-in that allows a
programmer to select user interface elements of a webpage and
view the corresponding source code. FireCrystal then eases
creation of another web page by providing features to extract
and reuse this code, especially code for user interface interac-
tions. Another system, BluePrint [3], is an Adobe Flex Builder
plug-in that semi-automatically gleans task-specific example
programs and related information from the web, then provides
these for use by EUPs. Other systems are designed to simplify
the task of choosing which existing programs to run or reuse
(e.g., [18]) by emulating heuristics that users themselves seem
to use when looking for reusable code.

Although the above approaches help EUPs by simplifying,
eliminating, or delegating the challenges of programming, none
are aimed at nurturing EUPs’ problem-solving ideas. In es-
sence, these approaches help EUPs by lowering barriers,
whereas the Idea Garden aims to help EUPs figure out for
themselves how to surmount those barriers.

However, there is a little work aimed at helping profession-
al interface designers generate and develop ideas for their inter-
face designs. (Designers are somewhat related to EUPs in their
frequent lack of experience or interest in programming per se.)
For example, Bricolage [24] allows designers to retarget design

ideas by transferring designs and content between webpages,
thus enabling multiple design ideas to be tested quickly. An-
other example is a visual language that helps web designers
develop their design ideas by suggesting potentially appropri-
ate design patterns along with possible benefits and limitations
of the suggested patterns [14]. That line of work partially in-
spired our research on helping EUPs generate new ideas in
solving their programming problems.

III. THE IDEA GARDEN PRINCIPLES

Using MLT as a foundation, an earlier version of the Idea
Garden was defined by Cao et al. as [6]:

(Host) A subsystem that extends a “host” end-user program-
ming environment to provide hints that ...

(Theory) follow the principles from MLT [11] and ...
(Content/Presentation) non-authoritatively give intentionally

imperfect guidance about problem-solving strategies, pro-
gramming concepts, and design patterns, via negotiated in-
terruptions.

(Implementation) In addition, the hints are presented via host-
independent templates that are informed by host-dependent
information about the user’s task and progress.

This paper presents seven principles to ground the Con-
tent/Presentation aspect above:

P1-Content. Hints must contain one or more of the following:
P1.Concepts = explains a programming concept such as it-

eration or functions. Can include programming con-
structs as needed to illustrate the concept.

P1.Minipatterns = design minipatterns show a usage of the
concept that the user must adapt to their problem (mini-
pattern should not solve the user’s problem).

P1.Strategies = a problem-solving strategy such as working
through the problem backward.

P2-Relevance. For Idea Garden hints that are context-sensitive,
the aim is that the user perceives them to be relevant. Thus,
such hints use one or more of these types of relevance:
P2.MyCode = the hint includes some of the user’s code.
P2.MyState = the hint depends on the user’s code, such as

by explaining a concept present in the user’s code.
P2.MyGoal= the hint depends on the requirements the user

is working on, such as referring to associated test cases
or pre/postconditions.

P3-Actionable. Because the Idea Garden targets MLT’s “active
users”, hints must give them something to do. Thus, Idea
Garden hints must imply an action that the user can take to
overcome a barrier or get ideas on how to meet their goals:
P3.ExplictlyActionable = the hint prescribes actions that

can be physically done, such as indenting something.
P3.ImplicitlyActionable = the hint prescribes actions that

are “in the head”, such as “compare” or “recall.”

P4-Personality. The personality and tone of Idea Garden en-
tries must try to encourage constructive thinking. Toward
this end, hints are expressed non-authoritatively [25], i.e.,
as a tentative suggestion rather than as an answer or com-
mand. For example, phrases like “try something like this”
are intended to show that, while knowledgeable, the Idea
Garden is not sure how to solve the user’s exact problem.

236

P5-InformationProcessing. Because research has shown that
(statistically) females tend to gather information compre-
hensively when problem-solving, whereas males tend to
gather information selectively [28], the hints must support
both styles. For example, when a hint is not small, a con-
densed version must be offered with expandable parts.

P6-Availability. Hints must be available in these ways:
P6.ContextSensitive = available in the context where the

system deems the hint relevant.
P6.ContextFree = available in context-free form through an

always-available widget (e.g., pull-down menu).

P7-InterruptionStyle. Because research has shown the superior-
ity of the negotiated style of interruptions in debugging sit-
uations [33], all hints must follow this style. In negotiated
style, nothing ever pops up. Instead, a small indicator “dec-
orates” the environment (like the incoming mail count on
an email icon) to let the user know where the Idea Garden
has relevant information. Users can then request to see the
new information by hovering or clicking on the indicator.

As Table I shows, P4-Personality and P7-InterruptionStyle
have already been isolated for summative investigation in other
end-user programming research [25, 33]. Thus, in this paper,
we present our investigation of P1, P2, P3, P5, and P6.

IV. THE PRINCIPLES CONCRETELY: IDEA GARDEN PROTOTYPE

A. The Idea Garden Prototype for Gidget

The Idea Garden supplements a host EUP environment, and
for this version of the Idea Garden, the host is Gidget, an online

puzzle game that centers on debugging (Fig. 1). Gidget has
been used successfully by middle- and high-school teens [26]
and by adults between the ages of 18 and 66 years old [25].
Gidget has two target audiences: novices who wish to learn
programming, and indifferent EUPs who have no interest in
learning programming, but want to play Gidget’s puzzle
games. The latter target audience made it a suitable host for the
new version of the Idea Garden we present here.

In the Gidget game, a robot named Gidget provides players
with code to complete missions. According to the game’s
backstory, Gidget was damaged, and the player must help
Gidget diagnose and debug the faulty code. Missions (game
levels) introduce or reinforce different programming concepts.
After players complete all 37 levels of the “puzzle play” por-
tion of the Gidget game, they can then move on to the “level
design” portion to create (program) new levels of their own.

B. The prototype’s support for the 7 principles

The Idea Garden prototype aims to help Gidget players
who are unable to make progress even after they have used the
host’s existing forms of help. Before we added the Idea Garden
to it, Gidget had three built-in kinds of help: a tutorial
slideshow, automatic highlighting of syntax errors, and an in-
line reference manual (called a “dictionary” in Gidget) availa-
ble through a menu and through tooltips over keywords in the
code. The Idea Garden supplements these kinds of help by in-
stantiating the seven principles as follows (illustrated in Fig. 2).

P1-Content: The Concept portion is in the middle of Fig. 2,
the Minipattern is shown via the code example, and the Strate-
gy portion is the numbered set of steps at the bottom.

P2-Relevance: Prior empirical studies [9] showed that if
Idea Garden users did not immediately see the relevance of a
hint to their situation, they would ignore it. Thus, to help Gidg-
et users quickly assess a hint’s relevance, the hint first says
what goal the hint is targeting, and then includes some of the
user’s own code and/or variable names (Fig. 2), fulfilling
P2.MyCode and P2.MyState. The antipatterns, explained in the
next subsection, are what make these inclusions viable.

P3-Actionable, P4-Personality, P5-InformationProcessing:
Every hint suggests action(s) for the user to take. For example,

TABLE I. CITATIONS SHOW EMPIRICAL EVIDENCE OF THE PRINCIPLES. AN

UPDATED VERSION WITH THE CONTRIBUTIONS OF THIS PAPER APPEARS NEAR

THE END. +: PRINCIPLE WAS HELPFUL, -: PRINCIPLE WAS PROBLEMATIC.

Principle Formative Evidence Summative Evidence
P1-Content

P2-Relevance -[9]

P3-Actionable

P4-Personality +[25]

P5-InformationProcessing +[8]

P6-Availability

P7-InterruptionStyle +[33]

Fig. 1. Dictionary entries appear in tooltips when players hover over

keywords (“for” shown here). Hovering over an idea indicator () then
adds an Idea Garden hint. (The superimposed callouts are for readability.)

Fig. 2. Hovering over a shows a hint. The superimposed Ps show
where the 7 principles are instianted in this hint.

237

in Fig. 2, the hint gives numbered actions (P3). However,
whether the hint is the right suggestion for the user’s particular
situation is still phrased tentatively (P4). Since hints can be
relatively long, they are initially collapsed but can be expanded
to see everything at once, supporting players with comprehen-
sive and selective information processing styles (P5).

P6-Availability, P7-InterruptionStyle: Hints never interrupt
the user directly; instead, a hint’s availability in context
(P6.ContextSensitive) is indicated by a small green beside
the user’s code (Fig. 2, P7) or within one of Gidget’s tooltips
(Fig. 1). The user can hover to see the hint, and can also “pin”
a hint so that it stays on the screen. Context-free versions of all
the hints are always available (P6.ContextFree) via the “Dic-
tionary” button at the top right of Fig. 1.

C. Antipattern support for the principles
Idea Garden’s support for several of the principles comes

from its detection of mini-antipatterns in the user’s code. An-
tipatterns, a notion similar to “code smells”, are implementa-
tion patterns that suggest some kind of conceptual, problem-
solving, or strategy difficulty. The prototype detects these an-
tipatterns as soon as a player introduces one.

Our prototype detects several antipatterns that imply con-
ceptual programming problems. In selecting which ones to
support in this prototype, we selected antipatterns that occurred
in prior empirical data about Gidget at least three times (i.e., by
at least three users). For example: (1) no-iterator: not using an
iterator variable within the body of a loop; (2) all-at-once: try-
ing to perform the same action on every element of the set/list
all at once instead of iterating over the list; and (3) partial im-
plement: defining a function without calling it, calling an unde-
fined function, or instantiating an undefined object.

Detecting antipatterns enables support for two of the Idea
Garden principles. The antipatterns define context (P6.Context
Sensitive), letting the hint to be derived from and shown in the
context of the problem. For P2-Relevance, the hint communi-
cates relevance (to the user’s current problem) by being de-
rived from the player’s current code as soon as they enter it,
such as using the same variable names (Fig. 2, P2 and P6). The
prototype brings these two principles together by constructing
a context-sensitive hint whenever it detects a conceptual an-
tipattern. It then displays the beside the relevant code to
show the hint’s availability.

V. STUDY #1: PRINCIPLED FORMATIVE STUDY

Prior to implementing the principles in the prototype, we
conducted Study #1, a small formative study. Our goal was to
gather evidence about our proposed principles, helping us
choose which ones to implement in the prototype that we
would evaluate in Study #2.

The data for this study came from think-aloud data we ob-
tained from a previous study [26]. The previous study had 10
participants (5 female, 5 male) 18-19 years old, with little to no
programming experience. Each session was 2 hours, fully vid-
eo recorded. The experimenter helped participants when they
were stuck for more than 3 minutes. We re-analyzed the video
recordings from this study using the code sets in Table II. The
previous study’s objective was to investigate Gidget barriers

and successes [26]. Here we analyze that study’s data from a
new perspective: to inform our research into how Idea Garden
principles should target those issues. Thus, the Idea Garden
was not yet present in Gidget for Study #1.

Although the Idea Garden was not yet present, some UI el-
ements in Gidget were consistent with some Idea Garden prin-
ciples (Table III’s left column). We leveraged these connec-
tions to obtain formative evidence about the relative im-
portance of the proposed principles. Toward this end, we ana-
lyzed 921 barriers and 6138 uses of user interfaces.

The Gidget UI elements’ connection to Idea Garden princi-
ples primarily related to P2-Relevance and P6-Availability.
Table III shows that, when these principles were present, par-
ticipants tended to make progress—usually without needing
any help from the experimenter.

However, as Table III also shows, each principle helped
with different barriers (defined in Table II). For example,

TABLE II. STUDY #1 AND #2 BARRIER CODES AND OUTCOME CODES.

Algorithm Design Barrier Codes [9, 26]
More than once Did not know how to generalize one set of commands

for one object onto multiple objects
Composition Did not know how to combine the functionality of

existing commands

Learning Phase Barrier Codes [23, 26]
Design Did not know what they wanted Gidget to do

Selection Thought they knew what they wanted Gidget to do, but
did not know what to use to make that happen

Use Thought they knew what to use, bud did not know how
to use it.

Coordination Thought they knew what things to use, but did not
know how to use them together

Understanding Thought they knew how to use something, but it did
not do what they expected

Information Thought they knew why it did not do what they
expected, but did not know how to check

Barrier Outcome Codes
Progress Participant overcame the barrier or partially overcame

the barrier.
In-person help Participant overcame the barrier, but with some help

from the experimenter.
No Progress Neither of the above.

TABLE III . STUDY #1: NUMBER OF INSTANCES IN WHICH PARTICIPANTS

MADE PROGRESS FOR PRINCIPLES P2 AND P6. (MAX VALUES HIGHLIGHTED.)

+: PROGRESS WITH NO IN-PERSON HELP.
+☺: PROGRESS WITH ADDITIONAL HELP FROM EXPERIMENTER.
-: NO PROGRESS.

Principle
(example UI elements)

Participants’
progress

Which barriers

 + +☺ -
P2-Relevance

P2.MyState
(e.g., Error messages)

2128
44%

1378
28%

1368
28%

(Minor contribution to
most)

P2.MyGoal
(e.g., Mission/level goals)

767
42%

571
31%

487
27%

Design
(& minor to most)

P6-Availability
P6.Context-Sensitive Avail.
(e.g., Tooltips over code)

1691
44%

1151
29%

1034
27%

Coord., Compos.,
Selection (& minor to
most)

P6.Context-Free Avail.
(e.g., Dictionary)

823
36%

845
37%

594
26%

(Minor to Design)

238

P2.MyGoal stood out in helping participants with Design barri-
ers, whereas P6.ContextSensitive was strong with Coordina-
tion, Composition, and Selection barriers.

These results revealed useful insights for Study #2’s princi-
pled evaluation and the Idea Garden prototype: (1) The com-
plementary roles that it revealed of different principles for dif-
ferent sections in “barrier space” caused us to design Study #2
to allow evaluation from a barrier perspective. (2) The promis-
ing results for P2-Relevance and P6.ContextSensitive motivat-
ed us to design several of the antipatterns described in Section
IV, so as to trigger relevant hints in context. (3) The concepts
(P1.Concepts) that participants struggled with the most were
the ones we wrote the antipatterns and hints to target.

Informed by these insights, we implemented the principles
in the form described in Section IV and conducted Study #2 to
evaluate the results.

VI. STUDY #2 (SUMMATIVE): THE PRINCIPLES GO TO CAMP

We conducted Study #2 as a (primarily) qualitative study,
via two summer camps for teenagers playing the Gidget de-
bugging game. The teens used the Idea Garden whenever they
got stuck with the Gidget game. The study’s goal was to evalu-
ate the usefulness of the Idea Garden principles to these teens.
Our overall research question was: How do the principles in-
fluence the ways indifferent EUPs can solve the programming
problems that get them “stuck”?

The two summer camps took place on college campuses in
Oregon and Washington. Each camp ran 3 hours/day for 5
days, for 15 hours total. Campers spent 5 hours each in Gidget
puzzle play; other activities such as icebreakers, guest speak-
ers, and breaks; and level design.

We recruited 34 teens aged 13-17. The Oregon camp had 7
males and 11 females; all 16 teens in the Washington camp
were females. Both camps’ median ages were 15 years. The
participants were paired up into same-gender teams of similar
age (with only one male/female pair) and were instructed to
follow pair programming practices, with the “driver” and “nav-
igator” switching places after every game level.

The Gidget game is intended for two audiences: those who
want to learn programming and our population of indifferent
EUPs. Since the Idea Garden targets the latter audience, we
aimed to recruit camp participants with little interest in pro-
gramming itself by inviting them to a “problem-solving” camp
(without implying that the camp would teach programming).

The teens we attracted did seem to be largely made up of
the “indifferent EUP” audience we sought. We interviewed the
outreach director who spoke with most parents and kids of
Study #2’s Oregon camp, which targeted schools in economi-
cally-depressed rural towns, providing scholarships and trans-
portation. She explained that a large percentage of campers
came in spite of the computing aspect, not because of it: the
primary draw for them was that they could come to the univer-
sity, free of cost, transportation provided.

The same researchers ran both camps: a lead (male gradu-
ate student) led the activities and kept the camp on schedule; a
researcher (female professor), and four helpers (one male grad-

uate student, three female undergraduates) answered questions
and approached struggling participants. We provided no formal
instruction about Gidget or programming. The Gidget system
recorded logs of user actions, and the helpers observed and
recorded instances when the campers had problems, noting if
teams asked for help, what the problem was, what steps they
tried prior to asking for help, and what (if any) assistance was
given and if it resolved the issue.

We coded the 407 helper observations in three phases using
the same code set as for Study #1: we first determined if a bar-
rier occurred, then which types of barriers occurred, and finally
what their outcomes were (Table II). Two coders reached 85%,
90%, and 85% agreement (Jaccard Index), respectively, on
20% of the data during each phase, and then split up the rest of
the coding. We then added in each additional log instance (not
observed by a helper) in which a team viewed antipattern-
triggered Idea Garden hint marked by a . We considered
these 39 instances evidence of “self-proclaimed” barriers. Two
coders reached 80% and 93% on 20% of the data respectively,
and one coder finished the remaining data. Finally, for purpos-
es of analysis, we removed all Idea Garden instances in which
the helper staff also gave assistance (except where explicitly
stated otherwise), since we cannot know in such instances
whether progress was due to the helpers or to the Idea Garden.

VII. STUDY #2 RESULTS

A. Successes
Teams did not always need the Idea Garden; they solved 53

of their problems just by discussing them with each other, read-
ing the reference manual, etc. However, when these measures
did not suffice, they turned to the Idea Garden for more assis-
tance 149 times (bottom right, Table IV). Doing so enabled
them to problem-solve their way past 77 of these 149 barriers
(52%) without any guidance from the helper staff (Table V).

In fact, as Table V shows, when the Idea Garden hint or
was on the screen, teams seldom needed in-person help: only
25 times (out of 149+25) = 14%. Finally, the teams’ success
rate with in-person help alone (59%) was only a little higher
than with the Idea Garden alone (52%).

Table IV also breaks out the teams’ success rates principle
by principle (rows). No particular difference in success rates
with one principle or aspect versus another stands out in isola-
tion. However, viewing the table column-wise yields two par-
ticularly interesting barriers.

 First, Selection barriers (first column) were the most re-
sistant to the principles. This brings out a gap: the Selection
barrier happens before use as the user tries to decide what to
use, whereas the Idea Garden usually became active after a
player attempted to use some construct in code. How the Idea
Garden might close this gap is an opportunity we have barely
begun to explore.

Second, Coordination barriers (third column) showed the
highest progress rate consistently for all of the Idea Garden
principles. We hypothesize that this relatively high success
rate may be attributable to P1’s minipatterns (present in every
hint), which show explicitly how to incorporate and coordinate
combinations of program elements.

239

B. Teams’ Behaviors with P2-Relevance and P6-Availability

 In this section, we narrow our focus to observations of how
the teams reacted to the from the lens of P2 and P6. We
consider P2 and P6 together because the prototype supported
P2-Relevance in a context-sensitive (P6) way.

Context-sensitivity seemed very enticing to the teams. As
Table IV shows, teams accessed P6.ContextSensitive hints
about five times as often as the P6.ContextFree hints. Still, in
some situations, teams accessed the context-free hints to revisit
them out of context. Despite more context-sensitive accesses,
the progress rates for both were similar. Thus, this result sup-
ports providing for both of these situations, with both context-
sensitive and context-free availability of the hints.

Table VI enumerates the five ways the teams responded to
the context-sensitive s (i.e., those triggered by the mini-
antipatterns). The first way was the “ideal” way that we had

envisioned: reading and then acting on what they read. Teams
responded in this way in about half of our observations, mak-
ing progress 60% of the time. For example:

Team Turtle (Observation #8-A-2):
Observation notes: Navigator pointed at screen, prompting the

driver to open the Idea Garden on function. they still didn't
call the function.
Action notes: ... After reading, she said "Oh!" and said "I think I get
it now..." Changed function declaration from "/piglet/:getpiglet" to

"function getpiglet()". The popped up again since they weren't
calling it, so they added a call after rereading the IG and completed
the level.

However, a second response to the was when teams read
the hint but did not act on it. For example:

Team Beaver (Observation #24-T-8):
Observation notes: ... "Gidget doesn't know what a sapling is",
"Gidget's stupid". Looked at Idea Garden hint. ... "It didn't really
give us anything useful"

This example helps illustrate a nuance of P2-Relevance.
Previous research has reported challenges in convincing users
of relevance [9]. In this example the team may have believed
the hint was relevant to the problem, but not to a solution direc-
tion. This suggests that designing according to P2-Relevance
should target solution relevance, not just problem relevance.

Third, some teams responded to the by not reading the
hint at all. This helped a little in that it identified a problematic
area for them, and they made progress fairly often (Table VI),
but not as often as when they read the hint.

Fourth, some teams deleted code marked by the . They
may have viewed the as an error indicator and did not see
the need to read why (perhaps they thought they already knew
why). Teams rarely made progress this way (21%).

Fifth, teams used s as “to-do” list items. For example,
Team Mouse, when asked about the in the code in Fig. 3,
said “we’re getting there”. Using the as something to come
back to later is an example of the “to-do listing” strategy,
which has been a very successful problem-solving device for
EUPs if the strategy is explicitly supported [16].

C. Teams’ Behaviors with P3-Actionable

The two types of actionability that P3 includes, namely
P3.ExplicitlyActionable (step-by-step actions as per Fig. 2’s
P3) and P3.ImplicitlyActionable (mental, e.g. “refer back...”)

TABLE IV. BARRIER-BY-BARRIER PROGRESS WHEN SITUATION-BASED

ASPECTS OF IDEA GARDEN PRINCIPLES P2, P3, AND/OR P6 WERE ON-SCREEN.
(P1, P5 NOT SHOWN BECAUSE ALL ASPECTS WERE ALWAYS PRESENT.) THE

TOTAL COLUMN (RIGHT) ADDS IN THE SMALL NUMBERS OF DESIGN,
COMPOSITION, AND INFORMATION BARRIER INSTANCES NOT DETAILED IN

OTHER COLUMNS.

 Barriers

Se
le

ct
io

n

U
se

C
oo

rd
i-

na
ti

on

U
nd

er
-

st
an

di
ng

M
or

e
T

ha
n

O
n

ce

T
ot

al

P
2-

R

el
ev

an
ce

MyCode
8/20
40%

13/21
62%

1/1
100%

1/2
50%

12/24
50%

35/69
51%

MyState
9/24
38%

28/54
52%

12/18
67%

2/4
50%

12/25
48%

64/128
50%

P
3-

A

ct
io

na
bl

e Explicitly
Actionable

9/24
38%

28/54
52%

13/19
68%

2/4
50%

12/25
48%

66/130
51%

Implicitly
Actionable

10/23
43%

17/28
61%

1/1
100%

3/5
60%

14/29
48%

45/87
52%

P
6-

A

va
ila

bl
e Context

Sensitive
6/19
32%

22/37
59%

10/14
71%

1/3
33%

9/21
43%

48/95
51%

Context
Free

2/5
40%

5/7
71%

2/2
100%

1/1
100%

2/5
40%

12/21
57%

 Total (unique
instances)

11/27
41%

33/62
53%

13/19
68%

4/7
57%

14/30
47%

77/149
52%

TABLE V. BARRIER INSTANCES AND TEAMS’ PROGRESS WITH/WITHOUT

GETTING IN-PERSON HELP. TEAMS DID NOT USUALLY NEED IN-PERSON HELP

WHEN AN IDEA GARDEN HINT AND/OR ANTIPATTERN-TRIGGERED WAS ON

THE SCREEN (TOP ROW).

IG
On-screen?

Progress without
in-person help

Progress if team got
in-person help

Yes (149+25 instances) 77/149 (52%) 25

No (155 instances) 53 91/155 (59%)

TABLE VI: OBSERVED OUTCOMES OF RESPONSES TO THE . TEAMS MADE

PROGRESS WHEN THEY READ A HINT AND ACTED ON IT (ROW 1, COL 1), BUT

NEVER IF THEY IGNORED WHAT THEY READ (ROW 2 COL 1). (P2-RELEVANCE’S

MECHANISMS ARE ACTIVE ONLY WITHIN A HINT.)

Response Type Principles Progress%
Read hint
and then…

...acted on it P2+P6 25/42 60%

...ignored it P2+P6 0/4 0%
Didn’t read hint P6 6/15 40%
Deleted code marked by P6 4/19 21%
To-do listing P6 3/4 75%

Fig. 3. (1) Team Mouse spent time working on code above the s. When

(2) a helper asked them about the s in their code, they indicated (3) that the

s were action items to do later. Seven other teams also used this method.

240

instructions, helped the teams in very different ways.

Explicitly actionable hints seemed to give teams new (pre-
scriptive) action recipes. For example, Team Rabbit was trying
to write and use a function. The hint’s explicitly actionable
instructions revealed to them the steps they had omitted, which
was the insight they needed to make their code work:

Team Rabbit (Observation #9-T-3)
Observation notes: They wrote a function... but do not call it.

Action notes: Pointed them to the next to the function defini-
tion. They looked at the steps... then said, "Oh, but we didn't call it!"

Explicitly actionable instructions helped them again later,
in writing their very first event handler (using the “when”
statement). They succeeded simply by following the explicitly
actionable instructions from the Idea Garden:

Team Rabbit (Observation #10-T-1)
Observation notes: They wanted to make the key object visible
when[ever] Gidget asked the dragon for help. They used the Idea
Garden hint for when to write a when statement inside the key ob-
ject definition:
 when /gidget/:sayThis = "Dragon, help!" ...
The when statement was correct.

In contrast to explicitly actionable instructions, implicitly
actionable instructions seem to have given teams new options
to think over. In the following example, Team Owl ran out of
ideas to try and did not know how to proceed. But after view-
ing an Idea Garden hint, they started to experiment with new
and different ideas with lists until they succeeded:

Team Owl (Observation #11-A-7):
Observation notes: They couldn't get Gidget to go to the [right]
whale. They had written “right down grab first /whale/s.”
Action notes: Had them look at the Idea Garden hint about lists to
see how to access individual elements ... Through [experimenting],
they found that their desired whale was the last whale.

The key difference appears to be that the explicitly actiona-
ble successes came from giving teams a single new recipe to
try themselves (Team Rabbit’s second example) or to use as a
checklist (Team Rabbit’s first example). This behavior relates
to the Bloom’s taxonomy ability to apply learned material in
new, concrete situations [2]. In contrast, the implicitly actiona-
ble successes came from giving them ways to generate new
recipe(s) of their own from component parts of learned materi-
al (Team Owl’s example), as in Bloom’s “analyze” stage [2].

D. Teams’ Behaviors with P5-Information Processing

Recall that P5-InformationProcessing states that hints
should support EUPs information processing, whether compre-
hensive (process everything first) or selective (process only a
little information before acting, find more later if needed). The
prototype did so by condensing long hints into brief steps for
selective EUPs, which could optionally be expanded for more
detail for comprehensive EUPs. We also structured each hint
the same way so that selective EUPs could immediately spot
the type of information they wanted first.

Some teams including Team Monkey and Team Rabbit,
followed a comprehensive information processing style:

Team Monkey (Observation #27-S-6)
Observation notes: <Participant name> used the [IG hint] a LOT
for step-by-step and read it to understand.

Team Rabbit (Observation #8-W-4)
Observation notes: They were reading the IG for functions, with
the tooltip expanded. After closing it, they said "Oh you can reuse
functions. That's pretty cool."

Many of the teams who preferred this style were female.
Their use of the comprehensive style is consistent with prior
findings that females often use this style [17, 28]. As the same
past research suggests, the four teams with males (but also at
least one of the female teams) used the selective style.

Unfortunately, teams who followed the selective style
seemed hindered by it. One male team, Team Frog, exemplifies
a pattern we saw several times with this style: they were a bit
too selective, and consistently selected very small portions of
information from the hints, even with a helper trying to get
them to consider additional pertinent information:

Team Frog (Observation #24-W-12 and #24-W-14):

Observation Notes: Pointed out and even pointed to code,
but they quickly selected one line of code in the IG help and tried it.
... They chose not to read information until I pointed to each line to
read and read it

In essence, the prototype’s support for both information
processing styles fit the ways a variety of teams worked.

VIII. HOW MUCH DID THEY LEARN?

After about 5 hours of debugging their way through the
Gidget levels, teams reached the “level design” phase, in which
teams were able to freely create whatever levels they wanted.

In contrast to the puzzle play activity, in which teams only
fixed broken code to fulfill game goals, this “level design” part
of the camp required teams to author level goals, “world code,”
behavior of objects, and code that others would debug to pass
the level. Fig. 4 shows part of one such level.

The teams created between 1 to 12 levels each (median:
6.5). As Fig. 4 helps illustrate, the more complex the level a
team devised, the more programming concepts the team need-
ed to use to implement it. Among the concepts teams used
were variables, conditionals (“if” statements), loops (“for” or
“while”), functions, and events (“when” statements).

The teams’ use of events was particularly telling. Although
teams had seen Idea Garden hints for loops and functions
throughout the puzzle play portion of the game, they had never
even seen event handlers. Even so, all 9 teams who asked help-

Fig. 4. Team Tiger’s “River Dam” level’s functions, conditionals, and loops.

241

ers how to make event-driven objects were immediately re-
ferred to the Idea Garden hint that explains it, and all eventual-
ly got it working with little or no help from the helpers.

The number of programming concepts a team chose to in-
corporate into their own levels can be used as a conservative
measure of how many such concepts they really learned by the
end of the camp. This measure is especially useful here, be-
cause the same data are available from the Gidget camps the
year before, in which in-person help was the main form of as-
sistance available to the campers [26] (Table VII).

As Table VII shows, the teams from the two years learned
about the same number of concepts on average. Thus, the
amount of in-person help from the prior year [26] that we re-
placed by the Idea Garden’s automated help resulted in almost
the same amount of learning.

As to how much in-person help was actually available, we
do not have identical measures, but we can make a conserva-

tive comparison (biased against Idea Garden). We give full
credit to Idea Garden this year only if no in-person help was
involved, but give full credit to the Idea Garden last year if one
of our early Idea Garden sketches was used to supplement in-
person helpers that year. This bias makes the Idea Garden im-
provement look lower than it should, but is the closest basis of
comparison possible given slight differences in data collection.

This comparison is shown in Table VIII. As the two tables
together show, Study #2’s teams learned about the same num-
ber of concepts as with the previous year’s camps (Table VII),
with significantly less need for in-person help (Table VIII,
Fisher’s exact test, p=.0001).

IX. CONCLUDING REMARKS

Table IX summarizes Study 2’s evidence of each principle
and its component parts. One way to view these results is in
how they tease apart what each principle adds to supporting a
diversity of EUPs’ problem-solving situations.

P1-Content: Teams’ successes across a variety of concepts
(Table VII) serve to validate the concept aspect of P1; mini-
patterns were especially involved in teams’ success rates
with Coordination barriers; and strategies are discussed in P3
below. Together, these aspects enabled the teams to over-
come, without any in-person help, 41%-68% of the barriers
they encountered across diverse barrier types.

P2-Relevance and P6-Availability, in working together to
make available relevant, just-in-time hints, afforded teams
several different ways to use the to make progress. This
suggests that following Principles P2 and P6 can help sup-
port diverse EUP problem-solving styles.

P3-Actionable’s explicit vs. implicit approaches had different
strengths. Teams tended to use explicitly actionable instruc-
tions (e.g., “Indent...”) to translate an idea into code, at the
Bloom’s taxonomy “apply” stage. In contrast, teams seem to
follow implicitly actionable instructions more conceptually
and strategically (“recall how you...”), as with Bloom’s “ana-
lyze” stage. This suggests that the two aspects of P3-
Actionable can help support EUPs’ learning across multiple
cognitive process stages.

P5-InformationProcessing: P5 requires supporting both the
comprehensive and selective information processing styles,
as per previous research on gender differences in information
processing. The teams used both of these styles, mostly
aligning by gender with the previous research. This suggests
that following P5-InformationProcessing helps support di-
verse EUP information processing styles.

Finally, the teams learned enough programming in only
about 5 hours to begin building their own game levels compa-
rable to those created in a prior study of Gidget [26]. Howev-
er, unlike the prior study, they accomplished these gains with
significantly less in-person help than in the previous study.
These promising results suggest the effectiveness of the princi-
ples we have presented here in helping EUPs solve the pro-
gramming problems that get them “stuck”—across a diversity
of problems, information processing and problem-solving
styles, cognitive stages, and people.

TABLE VII. PERCENTAGE OF TEAMS USING EACH PROGRAMMING

CONCEPT DURING LEVEL DESIGN, FOR STUDY #2 VERSUS GIDGET CAMPS

HELD THE YEAR BEFORE. NOTE THAT THE AVERAGE IS NEARLY THE

SAME.

Study Bool Var. Cond. Loops Func. Event Avg.
Study #2

camps
100% 88% 25% 63% 44% 56% 63%

[26]
camps

100% 94% 35% 47% 41% 76% 66%

TABLE VIII. INSTANCES OF BARRIERS AND % OF TOTAL TEAMS

WORKED THROUGH WITH AND WITHOUT IN-PERSON HELP, THIS YEAR

UNDER THE PRINCIPLES DESCRIBED HERE, VS. LAST YEAR. (COMPARISON

BIASED AGAINST IDEA GARDEN; SEE TEXT.)

Study Used in-person
help

No in-person
help

Study #2 camps with Idea Garden:
Barriers with progress

116
47%

130
53%

Prior year’s camps [26]:
Barriers (progress not available)

437
89%

56
11%

TABLE IX. SUMMARY OF PRINCIPLE-BY-PRINCIPLE EVALUATIONS.
+: PRINCIPLE WAS HELPFUL, -: PRINCIPLE WAS PROBLEMATIC.

*:TEAMS PROGRESSED IN THE MAJORITY (>=50%) OF THEIR BARRIERS

WITH THESE IDEA GARDEN PRINCIPLES.

Principle Ways Formative
Evidence

Summative
Evidence

P1-Content +Study1 +Study2

P2-Relevance

P2-All -[9]

P2.1-MyCode +Study2*

P2.2-MyState +Study1 +Study2*

P2.3-MyRequirements +Study1

P3. Actionable
P3.1-ExplicitActionable +Study2*

P3.2-ImplicitActionable +Study2*

P4-Personality +[25]

P5-InformProc +[8] +Study2*

P6-Availability
P6.1-ContextFree +,-Study1 +Study2*

P6.2-ContextSenstive +Study1 +Study2*

P7-Interrupt +[33]

242

REFERENCES

[1] Andersen, R. and Mørch, A. Mutual development: A case study in
customer-initiated software product development. End-User
Development, (2009), 31-49.

[2] Anderson, L. (Ed.), Krathwohl, D. (Ed.), Airasian, P., Cruikshank, K.,
Mayer, R., Pintrich, P., Raths, J., Wittrock, M. A Taxonomy for
Learning, Teaching, and Assessing: A revision of Bloom’s Taxonomy of
Educational Objectives (Complete edition). Longman. (2001)

[3] Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S. Example-
centric programming: Integrating web search into the development
environment. In Proc. CHI 2010, ACM (2010), 513-522.

[4] Bransford, J., Brown, A., Cocking, R. (Eds), How People Learn: Brain,
Mind, Experience, and School, National Academy Press, 1999.

[5] Burnett, M., Beckwith, L., Wiedenbeck, S., Fleming, S., Cao, J., Park,
T., Grigoreanu, V., Rector, K. Gender pluralism in problem-solving
software. Interact. Comput. 23 (2011), 450–460.

[6] Cao, J., Fleming, S., Burnett, M., Scaffidi, C. Idea Garden: Situated
support for problem solving by end-user programmers. Interacting with
Computers, 2014. (21 pages)

[7] Cao, J., Fleming, S. D., and Burnett, M., An exploration of design
opportunities for ‘gardening’ end-user programmers’ ideas, IEEE
VL/HCC (2011), 35-42.

[8] Cao, J., Kwan, I., Bahmani, F., Burnett, M., Fleming, S., Jordahl, J.,
Horvath, A. and Yang, S. End-user programmers in trouble: Can the
Idea Garden help them to help themselves? IEEE VL/HCC, 2013, 151-
158.

[9] Cao, J., Kwan, I., White, R., Fleming, S., Burnett, M., and Scaffidi, C.
From barriers to learning in the Idea Garden: An empirical study. IEEE
VL/HCC, 2012, 59-66.

 [10] Carroll, J. and Rosson, M. The paradox of the active user. Interfacing
Thought: Cognitive Aspects of Human-Computer Interaction, MIT
Press. 1987.

[11] Carroll, J. The Nurnberg Funnel: Designing Minimalist Instruction for
Practical Computer Skill. 1990.

[12] Costabile, M., Mussio, P., Provenza, L., and Piccinno, A. Supporting
end users to be co-designers of their tools. End-User Development,
Springer (2009), 70-85.

[13] Cypher, A., Nichols, J., Dontcheva, M., and Lau, T. No Code Required:
Giving Users Tools To Transform the Web, Morgan Kaufmann. 2010.

[14] Diaz, P., Aedo, I., Rosson, M., Carroll, J. (2010) A visual tool for using
design patterns as pattern languages. In Proc. AVI. ACM Press 2010.
67–74.

[15] Dorn, B. ScriptABLE: Supporting informal learning with cases, In Proc.
ICER, ACM, 2011. 69-76.

[16] Grigoreanu, V., Burnett, M., Robertson, G. A strategy-centric approach
to the design of end-user debugging tools. ACM CHI, (2010), 713-722.

[17] Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., Rector, K., Kwan,
I. End-user debugging strategies: A sensemaking perspective. ACM
TOCHI 19, 1 (2012), 5:1-5:28.

[18] Gross, P., Herstand, M., Hodges, J., and Kelleher, C. A code reuse
interface for non-programmer middle school students. ACM IUI 2010.
2010. 219-228.

[19] Guzdial, M. Education: Paving the way for computational thinking.
Comm. ACM 51, 8 (2008), 25–27.

[20] Hundhausen, C., Farley, S., and Brown, J. Can direct manipulation
lower the barriers to computer programming and promote transfer of
training? An experimental study. ACM TOCHI 16, 3 (2009), Article 13.

[21] Kelleher, C. and Pausch, R. Lessons learned from designing a
programming system to support middle school girls creating animated
stories. IEEE VL/HCC (2006). 165-172.

[22] Kelleher, C. and Pausch, R. Stencils-based tutorials: design and
evaluation. ACM CHI, 2005, 541-550.

[23] Ko, A., Myers, B., and Aung, H.. Six learning barriers in end-user
programming systems. IEEE VLHCC 2004, 199-206.

[24] Kumar, R., Talton, J., Ahmad, S., and Klemmer, S. Bricolage: Example-
based retargeting for web design. ACM CHI, 2011. 2197-2206.

[25] Lee, M. and Ko, A. Personifying programming tool feedback improves
novice programmers' learning. In Proc. ICER, ACM Press (2011), 109-
116.

[26] Lee, M., Bahmani, F., Kwan, I., Laferte, J., Charters, P., Horvath, A.,
Luor, F., Cao, J., Law, C., Beswetherick, M., Long, S., Burnett, M., and
Ko, A. Principles of a debugging-first puzzle game for computing
education. IEEE. VL/HCC 2014, 57-64.

[27] Little, G., Lau, T., Cypher, A., Lin, J., Haber, E., and Kandogan, E.
Koala: Capture, share, automate, personalize business processes on the
web. ACM CHI 2007, 943-946.

[28] Meyers-Levy, J., Gender differences in information processing: A
selectivity interpretation, In P. Cafferata and A. Tubout (eds.), Cognitive
and Affective Responses to Advertising, Lexington Books, 1989.

[29] Myers, B., Pane, J. and Ko, A. Natural programming languages and
environments. Comm. ACM 47, 9 (2004), 47-52.

[30] Nardi, B. A Small Matter of Programming, MIT Press (1993).

[31] Oney, S. and Myers, B. FireCrystal: Understanding interactive behaviors
in dynamic web pages. IEEE VL/HCC (2009), 105-108.

[32] Pane, J. and Myers, B. More natural programming languages and
environments. In Proc. End User Development, Springer (2006), 31-50.

[33] Robertson, T., Prabhakararao, S., Burnett, M., Cook, C., Ruthruff, J.,
Beckwith, L., and Phalgune, A. Impact of interruption style on end-user
debugging. ACM CHI (2004), 287-294.

[34] Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., and Bishop, J.
Teaching and learning programming and software engineering via
interactive gaming. ACM/IEEE International Conference on Software
Engineering, 2013, 1117-1126.

[35] Turkle, S. and Papert, S. Epistemological Pluralism. Signs 16(1), 1990.

243

